
© Sharif University of Technology - CEDRA



© Sharif University of Technology - CEDRA By: Professor Ali Meghdari

Purpose:

 To Study Kinetic States and Principles of Particles .

Topics:

 Kinetic States:

- Momentum (Linear Momentum).

- Moment of Momentum (Angular Momentum).

 Kinetic Principles:

- Momentum Principle.

- Moment of Momentum Principle.

 Differential Equations of Motion.

NEWTONIAN MECHANICS

PARTICLES KINETICS
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Kinetics: Study and analysis of forces causing the motion.

We studied the Newtonian Laws in Chapter Two.  Let us

again consider the Law of Motion:

  amF (6.1)

Equations of Rectilinear Motions:

et: Tangential Unit Vector,

en: Normal Unit Vector, and

eb: Binormal Unit Vector = (et en)
m
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Note: In rectilinear motion, forces in “en” and “eb”

directions are balanced.
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Equations of Curvilinear Motions:

 Path Variable Concept:
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 Rectangular Cartesian Coordinates:

(6.4)
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 Spherical Coordinates:

(6.6)
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 Cylindrical Coordinates:

(6.5)
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Newton’s Equation of Motion for a System of Particles:

W

Equivalent 

Model C
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Total Weight = , where: (6.7)
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Consider a system of particles, where:

iF : Resultant force on 

particle “i” from sources

external to system.

)( jif
ij

 : Interaction forces

on each particle “i”

due to “j”. 

Applying Newton’s 2nd law, we have:   amF
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When we model a system of particles as a single particle,

we are actually studying the motion of its center of mass.

(6.9)
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but the location of the center of mass is found from:
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The Kinetic States:

 Linear Momentum (Momentum): For a Single Particle is 

defined by the mass times the velocity of the particle.

ii
mvPorvmP 

(6.10)
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Consider a System of N-Particles:
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 Moment of Momentum (Angular Momentum): For a

Single Particle;

, where: “O” is a moment center.    (6.12)
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(6.11)
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where: 


r : position vector of the “βth” particle from the

moment center “O”.

- For a System of N-Particles:
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The equivalent system may be represented as follows:
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Where:
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- For a Continuum (i.e. Rigid Body):
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Theorem-16: If the individual masses in a system of 

particles are constant, then the momentum of the 

equivalent mass particle is equal to the Total/Global

Momentum of the system of particles.
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Proof:

By definition, we have:

Note: the first moment of a mass system about its mass

center vanishes, meaning: 
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Global Moment of Momentum, and the Central Moment 

of Momentum:

For a system of particles, by definition, we have:
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O
HWhere; : (M.O.M. about any point “O” in space).
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Theorem-17: The central moment of momentum can be 

measured in any translatory reference frame fixed at the

mass center.

(6.19)
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The Kinetic Principles in the Newtonian Reference 

Frame (NRF):

The kinetic state of a material system is conserved unless

disturbed by exterior actions.  The Principle of Momentum

(P.M.) and the Principle of Moment of Momentum (P.M.M)

govern the change.

Recall: Newtonian (Inertial) Reference Frame;

Non-accelerating & Irrotational reference frame.

Admissible Newtonian Forces in the NRF shown on a

Free-Body-Diagram are:

- Contact Forces

- Field Forces (i.e. gravitational field, and electromagnetic

field)

- Spring, and Friction Forces
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