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RIGID BODY KINEMATICS

Purpose:

» Analytical Description of Rigid Body Motion.
» Matrix Transforms to Represent Rigid Body Motion.
» Reinforcement of Elementary Kinematical Equations.

Topics:

» Translation of Rigid Bodies.

» Rotation of Rigid Bodies.

» General Motion of Rigid Bodies (i.e. Robot Kinematics)
» Coordinate Transformations
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Rotation About an Arbitrary Axis (Equivalent Angle-Axis
Representation):

Euler’s Theorem(10-continued): Any change of orientation
for arigid body with a fixed body point can be accomplished

through a General Rotation Operator (a simple rotation) with
*K

a proper axis and angle selection.
Consider the following coordinates:

{Xi}: Spatial Coordinates

{gj}: Body Coordinates
R=R('K,0)=_R('K,0)

= A Simple/General Rotation Operator X,
. apout an arbitrary axis.
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Where:
-k kvO+cOd k. k vo-k sO k.kvO+k,sO
B(XK,H) =k k. vé+k. s k., k. véd+co k,k.vo-k so
K.K.vO—-Kk,s0 k,k.vO+k.sO K k.,v0+cod

And; i%

XK — kxlgl + kx2 €, + kx3§3 T [k kx2 kx3 ]t and kx21 + kfz T kfs =1

x1

vl =versd = (1— cosb)

1% 0 0
R(x,,0)=|0 cos@ -sin@| is R('K,0) where:k, =1 k,=0, Kk
0 singd cosod |

=0

X3
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I I I

11 12 13

For a given Rotation Matrix like R=_R('K,0)=|r,, 1, [, onecan
r, r, I

31 32 33|

Determine the equivalent angle-axis by taking an inverse approach,
such that:

i 1 |
Sin¢) = iE\/(r?,z = 23)2 T (r13 - r31)2 T (r21 s r12)2 o

d

cOSH = [, 1, +1; -1 “where: ik
2
i g 1 3, = Iy i
4 ,.5IN
6 =tan 1(—) K=— s = | = Ke
cos@ 25In 6
_r21 o r12_ _<x3_
© Sharif University of Technology - CEDRA By: Professor Ali Meghdari




Center of Excellence in Design, Robotics and Automation

This solution is valid for ( 0 <& <180 ), and for every pair of
equivalent angle-axis (XK,Q) , there exists another pair as
(—" K,—0) representing the same orientation in space with the

same rotation matrix. (no solutions for 8=0 and 180).

Any combination of Rotations Is always equivalent to a single rotation
about some axis “K” by an angle “0”.

Ex: Let IE . - _
0O 0 1|0 -1 O 0 0 1
R=R(x,,90)R(x,,90)=| 0 1 0|1 0 Of=(1 0 O
-1 0 0|0 0 1| |0 1 O

From above equations we have:
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L3
2

sin@ =+,/(1—0)% + (1—0)? + (L—-0)° =

0+0+0-1 -1
C0OSé = = —
2 2
_1(_I/2) w1oh!
1 1 1 1 1 il
5=ﬁ91 +ﬁ§2 +—3@3 ,and —ﬁz—(ﬁg +ﬁ§2 +ﬁ§3)

=R(x,,90)R(x,,90) = R(K 120) = R(-K ,~120) <+
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Infinitesimal Rotations, Anqular Velocity, and Anqgular
Acceleration:

Theorem-11: For general infinitesimal rotations, sequential of the axes

of rotation is not important.
Let us consider the displacement of a body point in a rotating

rigid body:
XS@E%
r"is the vector r after R Rotation, Ar
therefore: B oI P
i 0
r =Rr . and R
— e 1 /7 r K
- _ . X,
A[:[ —[:(R— I)[ (4.10) .7 @g
—— 5 2
X

0,
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If we let that x; and x; to be the axes of rotation, we have:

1 0 O c, —s6, 0
R =/0 cO -s6| and R =[sf, <cd, O
0 s6, co, 0 0 1
[ ¢, -—-sO, 0 | (cO, —sO,c0, s0,50, |
R.=R R =|cOsO, cHcH, -sO &R =R R =|sO, coOcH, —soOco,
| sOs0, sOco, co, 0 SO, co, |
4.11
—13 = 531 10
0=A0=0(¢g)=very—small =cosd —>l,and singd —> AL

Now let: { 0(67) =0

© Sharif University of Technology - CEDRA By: Professor Ali Meghdari




Center of Excellence in Design, Robotics and Automation

Then: 11 _aAg 0 ] 1 —A0, 0 ]
R,=1A0, 1 -A6| and R =/A6, 1 -AQ |=
0 AG, 1| 0 AG, 1|
R =R

=13 =31

Therefore, for General Infinitesimal Rotations we have:

(o)

=R
=1

170

Ry =

| >0
|1 70

4R, =

3

1
A0,

—Ad,

—AO, AG,
1 —Af,
AG, 1

The displacement vector Al due to such combination of

rotations will be:

*

Ar=r —r=(R-Dr

In matrix form:

or
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0 —-Af6, A0O, | X
Ar=| AG, 0 —AG,|x | @
—AG, AG, 0 |x
AX =y A0 X, = Ar=A0xr

(from the definition of cross product)

Sincer is a vector of constant magnitude in the rigid body,
we have:

,—XI = I=woxr where;

(Angular —Velocity) (4.14)
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Anqular Velocity Vector:
@ = ), €; = (sum of the rotation rates about various axes).

If the angular velocity vector “ () ” is defined (expressed)
In a set of moving coordinates Ei} having an angular
velocity “Q”, we may apply the Jaumann rate of a vector
to compute the angular acceleration vector.

Anqgular Acceleration Vector:

a=we +weé =we +o(Qxe)=we +Qxw

Q
(4.15) j Z

Note: Even if the rotation rates are constant, there will be an angular
acceleration whenever any of the axes do not have a fixed orientation.
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Velocity and Acceleration Field in a Rotating Rigid Body:

Consider the rotating rigid body shown:

Given: w and a as shown, and o)
p : vector of constant magnitude
fixed in the rigid body.

a, =axpt+tox(@xp) @
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EX: A top spins at a constant speed “ (0 ” at a fixed spot “O”. Meanwhile,
It precesses about the vertical axis at a speed * W ”, and its altitude

nutates at a speed “ @ ” as shown. Determine the velocity and

acceleration of a point “A” on its upper rim?

63If X3
() :

By: Professor Ali Meghdari
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Step-1: Angular Motion Analysis

{x;}: fixed spatial coordinate.

{z;}: rotating coordinate in which
the top spins only.

Anqular Velocity of {zj}: ‘ ) ﬁ ~~~~~~

7
‘/ " Ul
€1

rd

Q=ye, +991
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Angular Velocity of {z}:

Q:WQS_I_H.Ql ff/el 21

Angular Velocity of the top: @ =€)+ gbgg = g’ygg + é’gl + gbgg
In terms of the rotating coordinate {z;}:

Q=0u, +ysinbu, +ycosbu,

®=0U, +sin6u, + (¢ + 17 CosO)u, +~—
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Angular Acceleration of the top: Note that w is expressed in a set of

moving coordinate {z}, to find a use the Jaumann rate of a vector as:

a=ae +Qxo=0u,+(7sin 8 + ydcosb)u, + (17 cosd —yésin O)u, +

(Ou, + y7sin Ou, + yrcosbu,) x[Ou, +ysinbu, + (¢ + yrcosO)u,] =

o= (6 + pyrsin ), + (7sin @ +y0cosl — p)u, + (7cosl — yodsin H)u,

Step-2: Absolute Motion Analysis

Position Vector

of A in {z}:

—

p=acospu, +asingu, + hu,

Velocity Vector:

V

A= OXP

Acceleration Vector:

a

n=ax p+wx(@xp)
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For example if @ =1000 rpm=constant = go:lOOO(é—g)t rad,
0 =0.2sin(1007t) rad, and y = 0.5sIN(507t) rad, then for a specific

time (i.e. 2 ms) one can covert the results presented in rotating
coordinate-{z}, to the space-fixed coordinate-{x;}, using the rotation

transformation “ 5 ' BWBH 5 - between the two coordinates as:

{B}x :B{B}z 1 {\lA}x 3 B&A}y @A}x :B@A}z’ {a_)}x :B{Q}z’ {C_Z}x :B{Q}z
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General Motion of a Rigid Body (Translation & Rotation):

Chasle’s Theorem(12): The general motion of arigid body can be
described by a combination of motion of some convenient reference
body point and an Eulerian rotation about that point.

Note: Arigid body in space possesses Six-Degrees-of-Freedom:

3-DOF: for the position of the reference point (rigid body), and

3-DOF: for the orientation of the rigid body (i.e. Euler’s Angles).

Let us consider the motion of a moving rigid body in space:
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Let us consider the motion of a moving rigid body in space: P

@ =€, and a=a.¢t,

Suppose that the motion of a body point
“O” in the rigid body in known, and we
wish to compute the motion of another

body point “P”? (Vo, a0)

Position Vector:

I'ojo =lg/0 T B (4.18)

Velocity Vector: / ,
d r P/O (some fixed point in space)

:['O/O,+I(_'):\_/O+Q></_) (4.19)

dt i%

Acceleration Vector:

a, =38, taxp+ox(@xp) @

Vo

© Sharif University of Technology - CEDRA By: Professor Ali Meghdari




Center of Excellence in Design, Robotics and Automation

EX: Given the velocity and acceleration of the block “A” in a double
slide mechanism shown. Determine the velocity and acceleration
of the block “B”? The hinges at A and B are both of the ball-and
-socket type.

Given: v, and a, ,
Find: vg and ag = ?

Solution: B Ll
Consider the rigid body AB, where: 1
A: is the reference body point, and pB .
B:is the body point whose motionx3 : 12 cm
is to be analyzed. I ;
- B5m/s? .o YR
A S L _ L Acm
X4 a /
/ —
S 13m/s .- ut tuz
, P‘l ul
3cm ‘
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12cm

B

B !

= |

X :

AL3 X2
(0)) :
0/’,
A 65 m/s2 -
< .,’
- - — o = — -, e m i L.
Xl 7 /
0,.
/7 '
Vs *13 m/s o
%
-
. ./’
/7 /7
0/. /‘
~~ ’»"
3Ccm
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Step-1: Motion (pos., vel., acc.) of point “B”’;

o =3u,+4u, +12U, cm

Ve =VU,, and a,=a,u,

Step-2: Motion of reference point “A”;

v, =1300u,cm/s, and a,=-6500u,cm/s"

Step-3: The angular motions of AB is unknown. Since the axial

component of the angular motions of AB do not contribute
to the motion of point “B”, we impose the following conditions;

( B A
Jo,
@ Cgp=0 7= =0
J L ‘,L_?B | e E =3w, +4w, +120, =0 (a)
,[_)B a- /_) =3, +4a, +12a, =0 (b)
a QB/A=Q-‘ 7= 0
g1
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Step-4: Velocity Analysis;

Ve :\_/A+pr8

VU, =1300u, + (o, U, + w,U, + w;U;) x (3u, +4u, +12u,)

-

u,: 0=1300+12w, — 4w, (c)
U,:  0=3w, -120, (d) ¢
U,V =4w, -3o, (e)

From expressions (a, c, d, e), we have:

v, =325u,cm/s, and @ =(100u, —1275u, +400u,)/13 rad/s

A—
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Step-5: Acceleration Analysis;

B B
a, =a,taxp +tox(@xp’) =

(u,:  0=-6500+12a, — 4a, — 31875 (f)]
Tu, 0=3a, —12¢, — 42500 (9) ¢
U, a, =4a, —3a, —127500 (h))

From expressions (b, f, g, h) , we have:

a, =—151260u,cm/s®, and  «=-3580u, +3146.6u, —153.8u, rad /s’

-

Also:  xZ+xZ+xZ =/* =constant

— () =2X X F 20X, +2X,%, =0 = X,=7?
O/

.s .2 .s .2 .s
— () =XX X AKX+ X =0 = X, =7
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A5
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