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Purpose:

 Analytical Description of Rigid Body Motion.

 Matrix Transforms to Represent Rigid Body Motion.

 Reinforcement of Elementary Kinematical Equations.

Topics:

 Translation of Rigid Bodies.

 Rotation of Rigid Bodies. 

 General Motion of Rigid Bodies (i.e. Robot Kinematics)

 Coordinate Transformations
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Rigid Body: The simplest form of a continuum, is an

aggregate of particles of which the distance between any

pair remains constant throughout the dynamic process.

Body Point: A point which is fixed in a rigid body or

its imaginary extension throughout the motion.
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xSpatial Coordinate System: A coordinate system ,                   that 

is fixed in space in which the rigid body moves.
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j

xRigid Body Coordinate System: A coordinate system,

that is fixed to the rigid body and moves with it.
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Note: The position of a body point in its body coordinate is invariant.

jjP uxr  = (An Invariant Set), therefore: (4.1)

   0jx = (Velocity of body points relative to the body coordinate 

is zero)
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Translation: When the line segment connecting any pair

of the body points in a moving rigid body maintains its 

orientation during the motion, we say that the rigid body

is in pure translation. 

Ex: Rigid Body in Translation,

But particles may be in circular motion.

Theorem-7: In a translating rigid body, the displacement 

of all body points are the same.

Theorem-8: All body points in a translating rigid body

have simultaneous equal velocities and equal accelerations.
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Result: In kinematical analysis, once you are sure that a

rigid body has invariant orientation, any convenient body

point may be selected to compute its motion.

0 BlockBlock 

Ex: Consider the rectangular 

block shown:

ABED : Parallelogram

(block stays always 

horizontal, therefore 

it is in pure translation)

Given: ω = 20 rad/s, α = 300 rad/s2, Find ac = ?

Solution: 
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Rotation: When a moving rigid body has a fixed (or 

momentarily fixed) body point in space, the rigid body is said 

to be in rotation.

Theorem-9: In a rotating rigid body, when more than one 

fixed body points are present, these points must lie on a 

common straight line called the fixed (instantaneous) axis of 

rotation of rigid body.

We previously showed that: Rotation is an Orthogonal 

Transform.  If {     } is a spatial coordinate system, and {     } 

is the rigid body coordinate system, we have:

}{}{ P

j

P

i
xRx  (4.2) 
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}{}{ P

j

P

i
xRx  (4.2)   
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where: }{ P

i
x : Spatial position of “P” after rotation.

}{ P

j
x : Original position of “P”.

R : Rotation Matrix.

Note: For a rigid body, the distance between two body points  

“         ”is constant.OP
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Simple Rotation: Rotation of a rigid body

about a general fixed axes in space.

Elementary Rotation: Rotation of a rigid

body about one of the coordinate axes.
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Euler’s Theorem(10):

Any change of orientation (about an arbitrary axis) for a rigid body

with a fixed body point can be accomplished through a simple

rotation [Eq. (4.2)]. Then,the rigid body rotation can be resolved

into three elementary rotations, where the angles of these

rotationsare called the Euler’s Angles.

Finite (Spatial) Rotation:

A spatial rotation features rotation about two or more nonparallel

coordinate axes. Note that finite rotation is order dependent, and

does not satisfy the Commutative Law.

Two situations commonly arise in sequential rotations:

1. Body Fixed Rotations (Rotations about New-axis)

2. Space Fixed Rotations (Rotations about Original/Old-axis)
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: Spatial Coordinates

: Body Coordinates

Node-

Line

(x1-x2) 

plane

(ξ1-ξ2) 

plane
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ji

Rx 

R : Simple Rotation about a general axis

in space (can be resolved into 3-elementary rotations).
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Let us start from               and with a sequence of three rotations obtain

:




RzzRyyRx 















 



































 



100

0

0

),(,

0

0

001

),(,

100

0

0

),(
313













 cs

sc

zR

cs

scyRcs

sc

xR

where:

x3

x1

x2

y3

y1

y2

y3

y2

y1

z3
z2

z1

z3

z2

z1

3

1

2













© Sharif University of Technology - CEDRA



By: Professor Ali Meghdari




)(
321

RRRRx
x




RRRRRR 

321
,,

or:

(4.5)

n
RRRRR ...
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Therefore, for “n” rotations: 

=  (Post-Multiplication) (4.6)

Therefore:
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It is customary to refer to these angles as (i.e. in 

Spinning Top or a Gyroscope):

ψ : Angle of Precession

θ : Angle of Nutation

φ : Spin Angle

As a follow up to Euler’s Theorem,

angles “ψ, θ, φ” are called the

Euler’s Angles.

© Sharif University of Technology - CEDRA



By: Professor Ali Meghdari

Ex: Describing the Earth’s Motions in Space. In addition to its

movement about the Sun in an Ecliptic orbit in the Ecliptic plane, the

planet earth experiences Precession, Nutation, and Spin.

Spin: Daily rotation in 24 hours

Nutation: Inclination of the earth’s spin axis with respect to the normal to

the ecliptic plane (23.27).

Precession: Earth’s Spin-axis precesses along the surface of a hypothetical

cone with apex angle of 23.27 , approximately once every 26000 years.

(XY Plane)

(xy Plane)
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It can be shown that (proof in the Ginsberg’s book):
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 ; where: (4.7)

Therefore, for “n” rotations: 

123
... RRRRR

n
 = (Pre-multiplication) (4.8)

1
 RRR

xtx

x 

R
x



(Note that my conventions for Pre & Post Multiplications are opposite to
that of the Ginsberg’s book, since I am defining ,
, but he is defining ).
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RSpecial Case: A sequence of rotations described by      

and       about Body Fixed (New) axes, followed by          

about a Space Fixed (Original) axis, and then 

about a Body Fixed (New) axis, would lead to: 

Note: The final orientation of a coordinate system 

depends on the sequence in which rotations occur, 

as well as the magnitude of the individual rotations

and the orientation of their respective axes.

Important: Finite spatial rotations cannot be represented

as vectors, because vector addition is independent of

the order of addition.

ttttt
RRRRRandRRRRR

31244213
 (4.9)
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Ex: Consider the object shown.  First rotate it about the x3-axis by 90o, 

and then rotate it about the x2-axis by 90o.  Determine the new 

orientation of the object?

y3

y1

y2

x1

x2

x3

A: (1,0,0) B: (1,4,0)

C: (1,0,2)

F: (-1,0,2)

E: (-1,4,0)
D: (-1,0,0)
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y3

y1

y2

x1

x2

x3

A: (1,0,0) B: (1,4,0)

C: (1,0,2)

F: (-1,0,2)

E: (-1,4,0)D: (-1,0,0)

Solution: {y} and {x} originally coincide.  Since all rotations are about

the Original (fixed) {xi} axes, then Pre-Multiply to compute total rotation

as:
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Rotation About an Arbitrary Axis (Equivalent Angle-Axis

Representation):

Euler’s Theorem(10-continued): Any change of orientation

for a rigid body with a fixed body point can be accomplished

through a General Rotation Operator (a simple rotation) with

a proper axis and angle selection.

x1

x3

x2

ξ1

ξ2

ξ3

θ

xK
Consider the following coordinates:

}{
j


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i

x : Spatial Coordinates

: Body Coordinates

}{}{
ji

Rx 

),(),( 


KRKRR
xxx



= A Simple/General Rotation Operator 

about an arbitrary axis.
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And;
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For a given Rotation Matrix like                                                              one

Can Determine the equivalent angle-axis by taking an inverse approach,

such that:

, where:
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From above equations we have:

1800 This solution is valid for (                               ), and for every pair of

),( K
x

equivalent angle-axis , there exists another pair as

),(  K
x

representing the same orientation in space with the

same rotation matrix. (no solutions for θ=0 and 180).
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Any combination of Rotations is always equivalent to a single rotation

about some axis “K” by an angle “θ”.
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