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ORTHOGONAL CURVILINEAR COORDINATES

Description specifies the position of a point, by giving the value
of 3-parameters, q¢, (i.e. 0, ¢, R) which form an orthogonal mesh
In space.

There exist a unique transformation between the Cartesian
Coordinates (X, Yy, z) and the Orthogonal Coordinates,
g%, (i.e. 0, @, R), such that:

Xx=x(0,¢9,R), y=y(0,¢9,R), z=2(0, ¢, R) (3.16)

0=0(x,y,2), oo=0(x,y,2z), R=R(,Y, z2) (3.17)
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Xx=x(0,¢9,R), y=vy(0,¢,R), z=200,¢,R) (3.16)
0=0(x,y,2z), @=0(xy,2), R=R(XY,2) (3.17)

When two of the parameters of g“(i.e. 0, @, R) are held constant
while the third is given a range of values, the first group of
equations (16) and (17) specifies a curve in space in parametric
form.

When the constant parameter pair is given a variety of values,
the result is a family of curves. Repeating this procedure with
each of the other pairs of parameters held constant, produces
two more families of curves (i.e. called mesh). The families of
curves are mutually Orthogonal.

They are named after one of the types of surfaces on which one
of the curvilinear coordinates is constant.
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(X= X(R, 9y, Z,) |20
< X=X(R, ¢,, Z,)
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(X=X(Ry, 9, Z,) AT T
X= X(R,, ¢, Z,) N -
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A
X=X(6, ¢,, Ry)
X=X(6, 95, Ry)

 X=X(0, ¢, R)

(X= X(©., ¢, Ry)
X=X(0,, ¢, R,)

KXZ X6, ¢, R)

.
X=X(81, 91, R)
X=X(8,, ¢,, R)

_ X=X(6, ¢, R)

v
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Cylindrical Coordinates (R, @, Z):

Base Vectors are: {Xg, Xy : X7} < ®
€r ¢ unit vector in the direction of increasing R, er
b
Co - unit vector in the direction of increasing ¢, X, ¢ .
€, . unit vector in the direction of increasing Z. 7 Xo
€2
—_—
Position Vector: X2
el XR

leo =Reg +2€,(318) v
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Velocity Vector:

Ve = RQR + Re, + ZQZ +Z€,

unit vectors {eg, g, €} all rotate with an angular velocity “ (0

then using Jaumann Rate, we have:

QR:QRXQR:(¢QZ)X(QR):¢Q¢ and €, =0

Vp = RQR + R¢§gp + Z@z (3.19)
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Acceleration Vector:

a, =Re, +Re¢, + Rge, + Rppe, + Rppe, +Ze, +Z¢,
e, =0, xe,=(pe,)x(e,)=—pe, and ¢,=0

=(R=R¢*)e, + (2Ro + R@)e, +Ze,=a.e +a e, +a,€,

f aR - Radial Acceleration *

agp : Transverse Acceleration

a’Z . Axial Acceleration

2R§p : Coriolis Acceleration (due to the simultaneous change
in “R” and “¢@” with respect to time).

© Sharif University of Technology - CEDRA By: Professor Ali Meghdari




Center of Excellence in Design, Robotics and Automation

Spherical Coordinates (0, @, R): Xr
Ko
Base Vectors are: {Xq, X » Xr}
X3
e |
€o- unit vector in the direction of increasing 0, X
e(p . unit vector in the direction of increasing ¢, — Cr
- , L, \\ \\‘ e(p
€g . unit vector in the direction of increasing R. o e PZL
Lp/o
”f'll' _____ "~ -~"~\\ee e2
Position Vector: d N T
\ O ;R .
\\\ \/ SSAl -7 X2

o0 =Reg (3.21) ‘e?
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Spherical Coordinates (0, ¢, R):

Note that orientation of the unit vectors (eq, &, €r)
Changes with “0” and “@”, in accordance to the
following angular velocity:

Q = ge, + e, = p(cosbe, —sinbe,) + e,

.
7’
4
/
’
4
4
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" ’
[
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Now, applying Jaumann Rate to the efT
position vector rp,q rotating with the ’ ;
angular velocity Q, we have: R
€1
/
Velocity Vector: .
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Acceleration Vector:

ap =V, =(V,),6 +QxV, = Re; +(Rgsin @+ Rgsin g+ RogpcosHe,, +
(RO+RO)e, +[Resinfe, —Re*sin® e, + Rbe, —RO% e, —
R¢’ sin @ cos Oe, + ROgpcos be ]

a, =(R-—R@*sin?6—R6%)e, +
(2R@sin @ + 2ROgpcos 6 + Rgsin P)e,, +
+ (RO +2RO—-Rgp*sinfcosb)e,

ve o2
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Kinematical Quantities in Curvilinear Coordinates
via Transform Approach:

Theorem-6: The orientation of a curvilinear coordinate, q¢,
(i.,e. R, @, Z), at a point “P” in space is defined by the direction
of the Base Vectors, g,, at that point. If we let:

[(qa) : position vector of “P”, then;
_or

Za = aqa

(@]

Q

Base Vectors =

, and unit vectors of g are: €, = ‘

(@]

a

(3.25)

Note that the curvilinear coordinates are Orthogonal if the base
vectors form an orthogonal set, that is: “ g, .gs =0 for a = .
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Ex: In Cylindrical Coordinates: qa = (R,{D,Z)

r=xe, =Rcosgpe, + Rsingpe, + Ze, (position vector)

Base vectors representing the orientation of the cylindrical
coordinates at point P are:

r —r :
LR _QR _@_R_COS¢§1 + SN @€,
or .
> L¢:g¢:£=—RSIn¢Q1+RCOS¢QZ
or
&LZZQZ:8_£:§3

{A coordinate system is said to be curvilinear if one or more of its
base vectors are functions of position.}
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and; g g _

(e =" =" =9, =cospe, +singe,
9,
9, 9,

{ & =7 =/ ~SNpe +Cospe,

9. R
ey
9 g

\ QZ B —7 :_—]-Z:gz :§3
9,

Therefore, Position Vector Components of point P is represented by:
(X, (X, ] cosgp —sing 0]
1% =T <X riwhere: T =|sing cosp O, or
\X?’) gxz) | O O 1_
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X R
{Xi}Z (p{Xa} , where: {xa}:< X +=<X0°% (3.26)
and;

| —

x) lz)

%=L, %) = V=T v = @j=I1a;

=0

Velocity Vector Components may be obtained by time derivative

of Eq. (3.26) as: R) fR\
(}=T,(J+T, ) = {u}=T 0f+T Jof but
Z) Zk
R fF\')* B rR\

T,1,70p+T,

II—I
o

Vv
»=<R@r=qV_+ (3.27)
' v,

~ A . L J
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Similarly, Acceleration Vector Components are obtained as:

@ =T, %, f+20 %, j+T X,

@ @ =@ =9 & =@ =09
Rl BRIl I RERoF | &[aX
{aa}zl;l¢<O>+42R¢>:<2R¢+R¢>:<a¢>
kZ) . Z y . Z y \aZ)

* (3.28)
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Other Curvilinear Coordinates: {i.e. Elliptical or Conical
Coordinates (¢, n, §)}; {C: Zeta, n: Eta, &: Xi/Zai}

Ex: Plane Elliptical-Hyperbolic Coordinates (¢, n):
Consider the following plane elliptical-nyperbolic coordinate

system as:

X, = R(§+?)cosn and X, = R(.{—?)sinn

where “m” and “R” are constants. Note that:

If { = {, = constant, then the lines of constant ¢ are ellipses

defined by:
2 2
X X
1 4 2 =1 (Ellipse in x,—x, plane)

RS, + )2 RAS, - )
0 0
Co -
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If n = n, = constant, then the lines of constant n are hyperbolas

defined by:
2 2
X X
L — 2 =4m i
. yperbola in x,—x, plane)
(Rcosn,)* (Rsing,)’ e
X €
n =m/2 |
€n n = constant
1\

no=0

/ S=/m { =constant
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Position Vector:

m. .
r =X +X8,=R(, +§) cose, +R(& = Z)sine;

Base Vectors:

Xl = gg _ [R(1+§—) cos e, +[R(1—§—)S|n nle,
X,=9,= 20 =R + Dsinrle, +[R( ~ oo,

* (3.29)
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Check for Orthogonality:

g.-g - [—Rz(g+g)(1—%)sinncosn]+[Rz(g—?)(lJr %)sinncosn]

) m*, . ) M
=-R (g—?)smncos;ﬁR (g’—?)smncosn:O

Unit Vectors:

gg gg . e = /A —

C el 2 ’ 2
‘9;‘ R\/[(lﬂ})—?coszn] Rg\/[(1+r;)—2§r2003277]
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Orthogonal Transformation between {x;} and {x.}, or {¢;} and {e_}:

_(1—;‘2)(:0377 —(1+?2)sin77

(1+ ;)sinn (1—;‘2)00577

\/[(1+ ?j) — 2;003 21]

* (3.30)
Special Cases: If;

:\/E:xlzR(\/ﬁ+\/7)cosn 2Rv/mcosp,and  x, = R(~/m —

——
r\>>< |—\><
- 8
[l
|—
—
\\g>< ur\><
-
=
>
D
-
D
|—
[

r)smn 0

=O:>x1:R(§+?), and Xx,=0
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Example: A particle P shown in the figure moves along a helical path

described by the equations: -
[ x = acos(Qr) P
— vy =asin(Q7) (@) F
=—=ht [
Determine the velocity and acceleration > X

of the particle P?

z

Solution Methods:

1. Rectangular Coordinates; We may write directly from Eq. (a):

7 =acos(Qr)i +asin(Qzr)j +btk (b)
v =7 =—aQsin(Qr)i +aQcos(Qr)j+6k  (C)

—a 0’ cos(Qr)i —aQ’sin(Qr); (d)
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From which:

Bl =52+ 37 + 22 =Ja’ Q* +b°

— . . aaP 2
‘a‘:J:c +y +z7 =al)

(€)

(f)

2. Cylindrical Coordinates; From Eq. (a) according to cyllndrlcal

coordinates we can write:

p——

R=a:; R=R=0 N
— 6=Q1; 6=0Q: 6=0 (9) \’
| z=br: 2=b; £=0 A
R
v=Ré,+ROC, +2¢ =aQé,+be. hy — F—
nd=(R-r6)e,+(2RO+RO)e,+76. =—a O’ 5, (i)
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From which their magnitudes are:

7 = Ja® QF + b3 ()

YV

a|=aQ)’ (k)

3. Path Variable Coordinates; The velocity is given in path
coordinates as:

V=58 ()
Directly by use of Eg. (a) we obtain:

_ . . 2 1 2
é:ﬁ: (ﬂ] —I—[d—'yj —l—(dzj \/G Q —|—bz
dt dt dt dt

. d’s
S5 =

— drz

=0
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The unit vector e, is defined by:

.V —aQsin(Qr)i +aQcos(Qr)j+bk

€ = (n)
S \faz Q+5b°
The acceleration is of the form:
e )
.S e - . S
ﬂ:L’:SEI—I—SEr:SE’I—I——Eﬁ (0)
T ,C"
And from Eqg. (0) we can write: 7
it s .
e =—e (p)
Jo
Therefore, by differentiating Eq. (n) with respect to time we have:
2 . B 2 - - .
—aQ’cos(Qt)i —a 5111((2?); _ S (q)
Ja> Q+b’ p
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Considering only the magnitude of both sides of Eq. (q) we have:

S a )’

— = (r)
2 \/c?‘l Q+h*

Also from Eqgs (q) and (r) we can write:

e =—cos(Qr)i —sin(Qr); (s)

Substituting these into Eqgs. () and (o) we obtain:

v =—aQsin(Qr)i +aQcos(Qr)j +bk
a=-aQ’cos(Qt)i —aQ’?sin(Qr);

(t)

The magnitudes of 1_,; and ,{f agrees with the results obtained by
the previous coordinates.
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4. Spherical Coordinates; The velocity in Spherical Coordinates is
given by:

V=78 +rpé, +rosin(g)e,

now; s Bt )
- gj ] ‘-1.\ s,
=2 + 37 + 27 J Lh W
and, T
tan(¢5) — (w)
bt
from which, . a bt
sin(¢) = : . cos(g (X)
a’+b’t’ \f +b° 1
and from Eq. (w) by differentiation we obtain;
- ab 1 ab 1 ab

>t sec’(¢p) b1 (1+ tan’ (:;ai)) a’+b’t’
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also, & =sin(¢)cos(Qr)i +sin(¢)sin(Qr) 7 +cos(@)k

—_—

€; = cos(¢)cos(Qr)i +cos(¢)sin(Qr) j —sin(@)k (2)

—

é, = —sin(Qr)i +cos(Qr);
Substituting these results into Eq. (u), we obtain;

V=78, +r9é, +rosin(¢)é, W

V= 25#1‘_ a ——cos(Qr)i + a —sin(Q7); + bt p
2\/a2+bzf2 '\/a2+bzfz Jaz_i_bzrz \/GE—I-E)E."E

_ > —ab bt - bt = a —~
tyat+br e — cos(Qr)i + sin(Q7) 7 — k
T [\/ o N N

+\/a2 Ay (—sin(Qr)§+cos(Qr)})

al
Jar+ 077
=, and upon simplification we obtain;
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V= —aQsin(Qt)? + ans(Qt)} +bk (z-1)

Similarly, acceleration in Spherical Coordinate can be computed

WOm: G == (= r d? — r6*sin®(p))e,
+ (r* b+27p—r6* Sin(ﬁﬁ)cos(@))é;ﬁ (z-2)
+ (r' 0 sin(¢)+ 27 0 sin(¢)+ 27 b0 cos(gﬁ))é'ﬂ
d=-aQ’cos(Qt)i —aQ’sin(Qr) j (2:3)

Which is the same result as before!!!

It is well clear from this example that a wise selection of coordinates

In a given problem will speed up the solution.
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