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cartesian (Rectanqular) Cooradinates {X}-

Consider a particle traveling in a Cartesian coordinates:

r=Xe +X,6, + X,6; =XE€, (Position Vector) (3.10)




Remark: If Aand B are two different reference points in a single
reference frame, then; velocity and acceleration measures
would be independent of the reference point.

Foja=rg/a 155 where I's/a = const.
Foa=Fpe Where rg,=05

Vo/a =Vps =Vp
Ap,p =Ap,;g =4dp




Example: Write the position vector of the point “A” in terms of
the shown parameter (0)?

BC =Rsiné

OC =Rcosé

AC =2 -BC’ = R\/(%)Z —sin?@

r*(6) =[0C + ACe, = R(COS<9+\/(%)2 _sin?0)e,




Example: An inextensible cord, wrapped around a cylinder, is pulled
up as the cylinder rolls without slipping on a level ground. Determine
the position, velocity, and acceleration vectors of the tip of the cord

In terms of the parameter (0) and its corresponding derivatives.

1. Inextensibility of the cord implies that: X2
T
PA=PA ==R -
2 y
/
/
2. Rolling without slipping means that: !
A® O
PE=PE=R# 0\
\

3. From 1 and 2, we have:
DA=PA- PD:%R—(g—Q)R: RO

0,D=PE-OD=RO-R=R(6-1)




hence,
r.(0)=P0,e, +O,De, + DAe, =Re, + R(& —1)e, + Rk,

Position vector.

[A(H) — R(Q _1)§1 + R(H +1)§2

\elocity vector:

v,=I,=Rfe +Roe,=RO(e, +e,) %] :A/m

Acceleration vector: 4

I
d, :\_7A :EA — Rg(@l +§2) At O |

Bt o\




Example: The recording pen is used to draw the
line QP on graph paper by an automatic x-y
recorder. The velocity of the carriage AB is given
as X=2t+4 (ft/s) and the velocity of the pen
relative to carriage AB is y = 2/ y (ft/s). At
time t = 0 the pen is at the position (x,y) = (1,0).
Determine (a) the equation for the shape of the | Recordin
graph, (b) the velocity and acceleration of point P ! g Pen

att=2s, and (c) the slope of the graph at t=2 s.

3_1‘:2“4 ~ dx=2tdt +4dt =

q X=t"+4t+1

_y:2/y — ydy=2dt:>» 1 4 2

dt X=—y +y +1 f




1 . 2
X=—Y +y +1
16y g

v=8i+0.707 s
a=2i-0177] ws

dy 0.707
dx

=0.0884 =5

Recordin

g Pen




Chanaqging Relativity (Mapping), and Transformations:

In dynamics, it is sometimes helpful or necessary to describe/
transform components of a vector previously defined in one
coordinate frame into the another set of coordinates.
Let us consider a general situation where two coordinate systems,

X X. X re empl represent th
{X1’ XZ,XB}and{ )(1,)(2,)(3 }, are employed to represent the

components of a vector.




*

Giverr: Suppose P is known in the coordinate frame {; i b

Find. Define E in the coordinate frame { }?

;¥,'
4 X

| oP

It can be shown that:
P=TP" or {P} =[¢,{P} (3.14)

Y
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Il

where:

*-L =[/ ij] =

1

21

31

0, =cos(x,x;), (ie

| =
1n

= (Matrix of Direction Cosines)

él COS(@l’él) = COS(X1’)_(1)

€, 'él :‘Ql‘

Columns of Lf g]ij are:

the projection of the unit vectors of Yj Into Xi

Rows of -|=_=E g]ij are:

the projection of the unit vectors of Xi into j

(3.15)

)




When the origins coincide,L Is a , and ,

Expressing the relative orientation of frame { ; j} with respect to {)(i }.

.2 . -1t
Inverse of an Orthogonal matrix is equal to its Transpose: (T “=T )

( are those in which the dot products of any
of its two columns are equal to zero, and the magnitude of each

one of its columns is equal to unity).




Elementary Rotation Matrices:

Rotation transformations about the coordinate axes are called the
Elementary Rotation Matrices, and they are defined as follows:

-Iz-l(xl"gl) —




TZ(XZ,QZ) —

- cosd, 0 sing, ]
0 1 0

—sing, 0 cosdo, |

X

| —
||




-L3(X3"93) —

Sin &,
0

Q

cosd, —sing, 0]
cosd, O
0 1
4 Xg
I,
)_(2
X2
)_(1

X

|—
X<




Ex: Determine the matrix of direction cosines between coordinates

{ X}and {X; }

)_(2

v]

X

30

R LR B cos1) cos(,2)
T_[gij]_[hl |zj_[COS(Xi’Xj)]_[Cos(Z,l) cos(Z,Z)}

T_ cos30 —sin30 B 0.866 —0.5
|sin30 cos30 | | 05 0.866

Therefore, if :

_ _ 0866 -05][1| [0.366
P=1g,+le, =P=TP= =
-~ | 05 08661 [1.366




Ex: Aslender bar lies in the first quadrant of the (x,-x,) plane. One of
Its tips, A, Is at the origin. The angular position with respect to x,-axis
IS “0”. A bead slides on the slender rod at a distance “R” from A and
slides out at a speed “v”. Determine the velocity of the bead expressed

In frame {x:;} for the cases when:

(a)- .
(b)- 0
yo v Y
2 Zy\ P
o
N 0 oy
A

Let {y;} be another coordinate set such that y, coincides with the

rod, and y, with X,
By: Professor Ali Meghdari




CO

{x}=T{y,} where:T=|S6

0

~-S6 0]
Céd O
0 1

Therefore, position of the bead in {x;} coordinate is:

(@)-

CO
SO

0

-S0 OfR
CO 0] 0|= RSO}
0 10| | 0

(RCH

V] (vCo
T|0|=4vSH
_O_ \ O J




(b)- R R

<
|
<
X
|l
——
X
——
|l
|—
()
+
|—
(@)

0 0
Velocity in {x} foordinate: i -
-0 -6 OR] [v] [vCO-REsH
{},={v} =| €O -680 0] 0|+T|0(={vSO+RECH|
0 0 0J0] [0] | O
Velocity in{y;} coordinate. _ .
Co SO 0 V
{\_/}y :{Vj}y :lt{vi}x |~ Sg CH O {Vi}x :4 R8>
0 0 1] 0




ORTHOGONAL CURVILINEAR COORDINATES

Description specifies the position of a point, by giving the value
of , 0%, (1.e. 0, @, R) which form an

In space.

There exist a unique transformation between the Cartesian
Coordinates (X, y, z) and the Orthogonal Coordinates,
g*, (i.e. 0, ¢, R), such that:

X=x(0,0,R), y=y(0,0,R), z=2(0,0,R)
(3.16)

0= Q(X, Y Z)a 0= (P(Xa Y Z)a R:R(X’ Y; Z)
(3.17)




X = X(O’ 0, R)’ y = y(O’ 0, R)! Z= 2(0’ 0, R)
(3.16)

0=0(x,y,2, ©o¢=0(x,Y2, R=R(XY,Z2)
(3.17)

When of the parameters of (| (i.e. 0, @, R) are held
while the IS given a range of values, the first group of equations
(16) and (17) specifies a curve in space in parametric form.

When the constant parameter pair is given a variety of values,
the result is . Repeating this procedure with
each of the other pairs of parameters held constant, produces

(i.e. called mesh). The families of
curves are mutually Orthogonal.

They are named after one of the types of surfaces on which one
of the curvilinear coordinates is constant.




.
o | X=X(R, @1, Z,)
1 X=X(R, @,, Z,)

L X=X(R, 9;, Z)

[ X= X(Ry, 9, Zy)

X=X(R,, ¢, Z,)

\X: X(R;, ¢, Z)

.
X=X(Ry, ¢4, 2)
X=X(Ry, ¢, Z2)

| X=X(R;, ¢;, 2)
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Z(t)

d(t)

R(t)




:
fX=\ X(©, 91, Ry)
A X=X(6, 9, Ry)

S —

(X=X(8;, ¢, Ry)
X= X0, ¢, R))

kX= X(6;, ¢, R)

=
X=X(01, 91, R)
X= X(9,, ¢,, R)

| X=X(6, ¢, R)
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Cylindrical Coordinates (R, ¢, Z):

€r - unit vector in the direction of increasing R,

e o . unit vector in the direction of increasing o,

€ I unit vector in the direction of increasing Z.

leo =Rez +2€, @19 Z

X1




Ve = R@R + Reg + Z@z + Z¢,

unit vectors {ex, e, €7} all rotate with an angular velocity (0 ”

then using Jaumann Rate, we have:

QR:QRXQR:(ngZ)X(gR):(ngp and ¢, =0

—Z

Vp = RQR T R¢g¢ + Zgz —




a, =Re, +Ré, + Rgpe, + Rge, +Rgpe, +Ze, + 78,

e, =w,xe,=(¢pe,)x(e,)=—¢pe, and ¢,=0

—Z

a, =(R—Rg@%)e, + 2R+ Rp)e, +Ze, =a e, +a,e, +a,e,
(3.20)

{ a. R . Radial Acceleration A
d

0 . Transverse Acceleration

a’Z - Axial Acceleration

2 R ¢ . Coriolis Acceleration (due to the simultaneous change
\. in “R” and “¢@” with respect to time).
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