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The first step in formulation of motion in a system is to find the mass

distribution and kinematics and dynamics parameters in terms of some known

variables. The selection of these variables may be considered to be simple but

play an important role in the way the final equations and their numerical

solution are obtained. The variables that are to describe the configuration of

the system are called Generalized Coordinates (GS).

Lagrange's equations are second order differential equations in the

generalized coordinates .

These may be converted to first-order differential equations or into state-space

form in the standard way, by defining an additional set of variables, called

motion variables. To convert Lagrange's equations, one defines the motion

variables simply as configuration variable derivatives, sometimes called

generalized velocities. Then the state vector is made up of the configuration

and motion variables: the generalized coordinates and generalized velocities.
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In contrast, Kane’s method motion variables are not generalized velocities, a

new definition of a linear function of generalized velocities, known as

generalized speeds (GS), replaces them. The total number of independent GS is

the same as the degrees of freedom. If the number of constraints is equal to m,

then the degrees of freedom will be: . Selection of GS in terms of

generalized velocities (GV) is completely arbitrary, but it affects the amount of

calculations and complexity of the problem. One can define the GS as:
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In Kane's method, the equations need to determine the linear and angular 

velocities in terms of                         andp
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On the other hand deriving the linear and angular velocities in terms of 

and                       can be easily done. Therefore, we have to find the 
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Kane’s Method
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The common form of constraint equations can be written as:

      11   mnnm bqa 

According to previous equations, it can be proved that:

       
111 


nppnn

xuWq

Where

 

 












CAx

BAW Pn

1

1  
 

nn
a

Y
A













 
 

pnPm

PPI
B















0

 

 
1









n

b

Z
C

By: Professor Ali Meghdari
© Sharif University of Technology - CEDRA



 q  q

Reducing the complexity in the derivation of matrix W leads to a simpler procedure

in both eventual equations and their solutions.

Consider that the linear and angular velocities are expressed in inertial and body 

coordinate frame respectively. Since we have obtained in terms of and {u},

all the velocities can be derived based on these variables.

Now we evaluate the linear and angular momentum for the kth body:
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The well known form of Kane’s equations is:
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Kane’s Characteristics

 Ease of Defining Intermediate & State 
Variables

 The Best Approach for Implementing in 
Numerical Formulations

 Control Oriented Form of Equations

 Simpler Closed Form Equations for Systems 
with Complicated Geometries & 
Nonholomonic Constraints

 Ease of Calculating Internal Forces
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Example 1: A system without constraint:
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Position of bodies as a function of G.C.:

Velocity of bodies as a function of G.C. and G.V.:

Assume that the selected generalized speeds are as follows:
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So the velocity of particles as a function of G.C. and G.S. are:
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Using Kane’s equations, we have: 
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Generalized forces in Kane’s method can be obtained via 

following formulas:
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On the other hand, active forces are:

iqkRk ˆ
11

1 


)ˆˆ( 3322

2 jcisqkRk 


jgmR g ˆ
2



322111 sqkqkF 32222 gcmqkF  322 gsmF 

So generalized forces are:
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Finally with substituting generalized forces in Kane’s 

equations of motion, we have:
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 Example 2: This example is a 4 bar mechanism with one 

degree of freedom. The positive angular direction is counter 

clockwise. This is a holonomic system with complicated 

constraints.
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The selected G.C. for this problem are: 

q1  , q2 , q3

Two holonomic constraints of problem are:

0332211  cLcLcL 04332211  LsLsLsL

We choose our generalized speed as following:

11 qu 

By differentiating of constraints, we have:
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By differentiating of constraints, we have:

In the next stage we want to determine the generalized inertia 

forces. Position and velocity of masses are:
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So we have:
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The generalized inertia forces can be obtained as follows:
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On the other hand, the generalized forces can be obtained as 

follows:
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Finally the only equation of motion is as follows:
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The above equation is valuable, because the Lagrange and Newton’s methods

are not able to achieve this simple form of equations.

In Newton’s method, after derivation of equations you must eliminate the

internal forces and by using constraints equations you must try to attain the

mentioned form of equation.

On the other hand, the Lagrange’s method is better than the Newton’s method

because of elimination of the internal forces in the equations of motion. In

Lagrange’s method, the number of equations of motion is equal to number of

G.C. which is equal or larger than degrees of freedom. So in the presence of

constraints, the Lagrange’s equations and the constraints relations must be used

together to obtain some independent equations.
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 Example 3: This is a nonholonomic system with 2 degree of 

freedom and one constraint.
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The selected G.C. for this problem are:

:The wheel spin angle
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:The wheelbarrow center of mass positioncc YX ,
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For determination of the generalized inertia forces, we have:
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Now the generalized forces must be determined:
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Finally the equations of motion will be:
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The simple equations determined by Kane’s method can not be obtained from 

Lagrange’s method. Although the Lagrange’s method reach the equations of 

motion simpler than the Kane’s method, the final form of equations in Kane’s 

method is very  
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 Example 4: This example is a 2D Stewart mechanism with 

three degrees of freedom called planner 3RPR. The positive 

angular direction is counter clockwise. This is a holonomic

system with complicated constraints.
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The introductory step in any problem is to define suitable generalized coordinates 

in order to decrease the complexity of the problem. These definitions are 

presented as:

            ,      ,

      ,     ,

      ,      ,

392817

654

332211

dqdqdq

yqxqq

qqq

ppp











Since the mechanism has 3DOF and we have defined 9 GC here, 6 holonomic

constraint equations should confine the motion. We choose the generalized 

speeds as:

ppp uyuxu   321      ,     ,

For each link of the 3RPR, an open loop chain between the basis and 

point P is written. For instance, the first open chain is:

)sin(sincos 414511717 qqqqqqqq   

)cos(cossin 414611717 qqqqqqqq   
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We could also eliminate the position of center of triangle (x,y) and reduce 

the number of GC to 7. Superficially, it might seem to be the better solution 

but the complexity of the problem would be more than before and the 

CPU time would increase up to 10 times more.

We have to evaluate vector          and for all of 7 bodies of the system.

for example for the first link:
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And the partial derivative with respect to the generalized speeds 

and the generalized coordinates will be:
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where we have:

To obtain the generalized force we have:
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The Kane’s method efficacy is proved if one implements this method by 

using the computer programming.

)2sin(      ),2cos(

)2sin(      ),2cos(

)sin(      ),cos(

)sin(       ),cos(

11441144

1313

11421142

1111

qqSqqC

qSqC

qqSqqC

qSqC













By: Professor Ali Meghdari
© Sharif University of Technology - CEDRA



© Sharif University of Technology - CEDRA
By: Professor Ali Meghdari


