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Introduction

»The first step in formulation of motion in a system is to find the mass
distribution and kinematics and dynamics parameters in terms of some known
variables. The selection of these variables may be considered to be simple but
play an important role in the way the final equations and their numerical
solution are obtained. The variables that are to describe the configuration of
the system are called Generalized Coordinates (GS).

»Lagrange's equations are second order differential equations in the
generalized coordinates §; (1 =1,..,n ) .

These may be converted to first-order differential equations or into state-space
form in the standard way, by defining an additional set of variables, called
motion variables. To convert Lagrange's equations, one defines the motion
variables simply as configuration variable derivatives, sometimes called
generalized velocities. Then the state vector is made up of the configuration
and motion variables: the generalized coordinates and generalized velocities.




Kane’s Method

»In contrast, Kane’s method motion variables are not generalized velocities, a
new definition of a linear function of generalized velocities, known as
generalized speeds (GS), replaces them. The total number of independent GS is
the same as the degrees of freedom. If the number of constraints is equal to m,
then the degrees of freedom will be: P=n—-m  selection of GS in terms of
generalized velocities (GV) is completely arbitrary, but it affects the amount of
calculations and complexity of the problem. One can define the GS as:

{U}le — [Y]Pxn{q}nxl "'{Z}le

In Kane's method, the equations need to determine the linear and angular

velocities in terms of  U,,...,U; and (,,...,q,

On the other hand deriving the linear and angular velocities in terms of
ql yeaey qn and qi,__., (, can be easily done. Therefore, we have to find the

relation between {q and {u}




The common form of constraint equations can be written as:

CINSCIES

According to previous equations, it can be proved that:

{0fe = W ] s + i




Reducing the complexity in the derivation of matrix W/ leads to a simpler procedure
in both eventual equations and their solutions.
Consider that the linear and angular velocities are expressed in inertial and body

coordinate frame respectively. Since we have obtained {q)n terms of {q }and {u},
all the velocities can be derived based on these variables.

Now we evaluate the linear and angular momentum for the A" body:
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The well known form of Kane’s equations 1s:

F'+F =0 r=1..p

Where:
F :_Z[d{Pk} _a{vk}_l_d{Hk} a{wk}j
—'\ dt  ou dt ou
A U 4 _
F=>V.R'+> & M’
=1 j=1



Kane’s Characteristics

 Ease of Defining Intermediate & State
Variables

» The Best Approach for Implementing In
Numerical Formulations

» Control Oriented Form of Equations

» Simpler Closed Form Equations for Systems
with Complicated Geometries &
Nonholomonic Constraints

» Ease of Calculating Internal Forces




» Example 1: A system without constraint:

q:

-t
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Position of bodies as a function of G.C.:

7 = (Lo + )
P = (I—10 +0, + (I—zo + q2)83)f— (I—zo + qz)csj

C; =€0s(d;) S5 =sIn(q;)
Velocity of bodies as a function of G.C. and G.V.:
VPt =g,

VP2 = (4, +G,8; + (L, + qz)q3c3)f +(=0,C5 + (Ly + Q2)q353)j

Assume that the selected generalized speeds are as follows:




So the velocity of particles as a function of G.C. and G.S. are:

VP =ui
VP = (U, +U,S; + (Lyg +0,)UsCy)l + (—U,C; + (Lo +0,)usS;) |

By differentiating the accelerations can be determined:

_ L . 2 e
ar = U, +U,S; + (L, +0,)UsC; + (Ly, +0,)u; SB}I T

{_ U,Cy + (Lo + 0, )Us S5 + 2U,U5S; + (Lyg + 0, U5 C, }J

The partial velocities are :

pl — p2 &
— pl av a = pl = pl Ps
Vp— = | V2 _V3 =0 Vl =1

o,
\72ID2 = (s,)1 + (=¢C,) ] \73p2 = (L, +0,)(C3l +53) ]




Using Kane’s equations, we have:

F'1=—(,".(ma"™)+v,”*.(m,a"?))
F' =—(V,”.(ma™)+v,”.(m,a"?))

F's =—(v,".(ma@™)+v,”.(m,a"))

By substituting from previous equations, we have:

* . . . . 2
Fai= —mu;, —m, {ul +U,S; + (I—zo + qz)u3c3 + (I—zo + Q2)u3 33}
* . . 2 2 2
Fo= —m, {ulsS +U, + (I—zo +q2)u3 (53 —C3 )_2u2u353C3}

Fs = —m, (I—zo + Q2){u103 + (Lzo + qz)us + 2('—20 + Q2)U3253C3 + 2u2U3832}




Generalized forces in Kane’s method can be obtained via
following formulas:
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On the other hand, active forces are:
R = —k,q,1 R*? = —k,q,(S,1 —C, ) R® =-m,gj
So generalized forces are:

F, =—-k,q, + m,gc, F, =—k,q, —K,0,S, F, =—m,gs,




Finally with substituting generalized forces in Kane’s
equations of motion, we have:

mu, +m, {ul +U,Sg + (Lyg + 0, )UsCq + (Lo + 0, )Us S, }+ K,G; +K,0,8; =0
m, {ulse, U, + (Lyg +G)Uy (S5 —C5 ) — 2U,UgS,Cy }"‘ K,0, —m,gc; =0

m, (Lzo + Q2){U1C3 + (I—zo + CIz)us + 2('—20 + Q2)u3253C3 + 2uz“3332 }"‘ m,gs; = 0




» Example 2: This example is a 4 bar mechanism with one
degree of freedom. The positive angular direction is counter
clockwise. This is a holonomic system with complicated
constraints.




The selected G.C. for this problem are.
q:, 49>, 43

Two holonomic constraints of problem are:
Lc+L,c—-Lc=0 Ls,+L,s,—L,s,—L, =0
We choose our generalized speed as following:

U, =¢q
By differentiating of constraints, we have:
L;s,q, +L,S,q, — L;s;q, =0

Lc,q, + L,c,0, — 1530, =0




By differentiating of constraints, we have:

- 1 _ _
d, 1
. L, sin(g; —a,)

: A
q= e = I—z Sm(% _qz) u, = (q) U :Y(q)ul

] . B(q)
1| Lsing, - q)

I Lssin(% _qz)_ - -

In the next stage we want to determine the generalized inertia
forces. Position and velocity of masses are:

FP =L (i +5, ) VP = Ld, (=i +¢,J)

. ~ 5 5 —p2 - e A
FP? =L (ci+s,))+L,] VP = L,G, (=S50 +C5 )




So we have:

vpl — |—1U1(_SliA+C1 j) \7p2 — LgB(q)ul(_SBf+CS j)

The partial velocities are as following:

V," =L (-s, +¢,])) V," = L,B(q)(-Ss,I +¢, )

The bodies accelerations are as following:

3" = L, (U,(=s,i +¢,])+U,” (—¢,0 —5,]))

~ . ~ A o 2 aB . & -
A% =L (B (5 +0.]) + B@ U (i -5+ Va5 v )




The generalized inertia forces can be obtained as follows:

* pl — pl = pl 2 .
F i=-v, .(ma")=—mL,u,

oB(q)
aq

F% =0, (m,a") = —m,L,"B(a)(B(q)u, + — Y (a)u,")

Fro=F" +F " =—(mL2, + m, L,’B(q)(B(q)u, + ;q) Y (Q)u,?))

On the other hand, the generalized forces can be obtained as
follows:

FY =V, R"* + V" R"2 = —g(m,L,s, + m,L,s,B(qQ))

F* 1= a_ilr.RT =7

F=F1+F"1=r—g(mLgs, + m,L,;s.B(q))

By: Professor Ali Meghdari




Finally the only equation of motion is as follows:

(mL +m,L, B(q) U, + mL, B(q) ;q)Y(q)u +g(mLs, + m,L;s,B(q)) =7

The above equation is valuable, because the Lagrange and Newton’s methods
are not able to achieve this simple form of equations.

In Newton’s method, after derivation of equations you must eliminate the
internal forces and by using constraints equations you must try to attain the
mentioned form of equation.

On the other hand, the Lagrange’s method is better than the Newton’s method
because of elimination of the internal forces in the equations of motion. In
Lagrange’s method, the number of equations of motion is equal to number of
G.C. which is equal or larger than degrees of freedom. So in the presence of
constraints, the Lagrange’s equations and the constraints relations must be used
together to obtain some independent equations.




» Example 3: This is a nonholonomic system with 2 degree of
freedom and one constraint.

Wheelbarro w: wb




The selected G.C. for this problem are:

o) ¢
9, | | @
q — =
Us X
da [ Ye_
¢ :The wheel spin angle
9 :The wheelbarrow rotation angle
XC , YC :The wheelbarrow center of mass position

We choose our the generalized speeds as following:

e




According to the problem kinematics we have:

VY=V =X 1+YJ=vi

X. =Vvcos(d) =u, cos(6)

Y, =vsin(é) =u, sin(6)

a =K =u,K
—~W __ —wb s U » p
=0 +@=—]+Uk

r
—~ W ul" 7, =wb  =w
a’ =—]+UK+@" xo




—

" =8°=3° +a"™ x7%° + " x(&"° x7®'°) = (U, +Iu,” ) + (uu, —1u,) ]

By differentiating, the partial velocities are:

a)l :O 0)2 :k C()]_W:_J COZ :k
r

~w o — W — Wb A

— — — Wb o —_

V., =I vV, =0 v,"" =i vV, =-l]

_J - - ) B
y E 0O O M __(Iwaw WXIWCOW)

1"={0 J O = u U, ~ - U, ~ U - U,

J M" ! 2k——"21)=-J(-—"21+2L+-2Kk

0 0 > 2r r 2 2r ) ( r rJ 2)




Mwb :—(IWbC_in +a—jwb X IWb —*Wb) _(Iu k)
B MY + &M ™ = (3 ) 5" oM™ £+ M "™ = —(lu, + J 22)

_ _ _. wb —wh :
Vlw'(_mwaw) +V1W '(_rnwbaW ): _((mw + mwb)uz)
— — — wb —wb .
v, .(=m,a@") +V, . (-m,,@8") = —(=Im,,, (uu, —14,))
F =—((m, +m ), +J 2 Lm,,lu,”)
re
" J -
F, =—((l "‘E"‘mwbl )uz _Imwbuluz)

Now the generalized forces must be determined:

—VC +&" xFN® = (v—qO)i — pg = (U, —qu,)i — pu,
B=VC +@"° xFP° = (V+q9)f_ pé=(u1+qu2)f— puzj

. B a 2~

a -~ A — B
= Vv, —CII pj VvV, =I vV, =ql —pJ




|I
<l
;Ul

A +V,°.R® = 2Rcos()

F
o | R*=R® =R
F, +V, .R® =-2pRsin(A)

II

<l

;Ul
>

Finally the equations of motion will be:

r=1: (m_ +m )i, +J 2 L +m,,lu,” = 2Rcos(B)
r?

r=2: (1+ % +m,, 1), —Im, U, = -2 pRsin(4)

The simple equations determined by Kane’s method can not be obtained from
Lagrange’s method. Although the Lagrange’s method reach the equations of

motion simpler than the Kane’s method, the final form of equations in Kane’s
method Is very




» Example 4: This example is a 2D Stewart mechanism with
three degrees of freedom called planner 3RPR. The positive
angular direction is counter clockwise. This is a holonomic
system with complicated constraints.

V4 Y




The introductory step in any problem is to define suitable generalized coordinates
in order to decrease the complexity of the problem. These definitions are
presented as:

o :‘91’ 0, :6)2’ s :93
q4:9p’ q5:Xp’ q6:yp
o :d1’ g :d21 Jo :ds

Since the mechanism has 3DOF and we have defined 9 GC here, 6 holonomic
constraint equations should confine the motion. We choose the generalized
speeds as:

u=X,, U,=Y,, U =6,

For each link of the 3RPR, an open loop chain between the basis and
point ~is written. For instance, the first open chain is:

Q7 Cos(Q; — C]7q1 sin q, = qs +,Oq4 Sin(ﬂ1 + Q4)
q? sin q, + q7q1 COsQ, = q6 —,OCI4 Cos(ﬁl + CI4)




We could also eliminate the position of center of triangle (x;)) and reduce
the number of GC to 7. Superficially, it might seem to be the better solution
but the complexity of the problem would be more than before and the
CPU time would increase up to 10 times more.

We have to evaluate vector {Vk} and {a)k} for all of 7 bodies of the system.
for example for the first link:

W-falatt  a=a

oS q,

By substituting ql we have:

L, : : B —sinq,
{\/1}—2q7( (U, + pu,sin(B, +q,))sing, +(u, — pu, cos(ﬂ1+q4))cosq1){cosql }

T (u1 + pU, Sin(ﬂl + Q4))Sin q, n (uz — pU, Cos(ﬁl + q4)) Cos q,
g, q,

0,




o}

And the partial derivative with respect to the generalized speeds
and the generalized coordinates will be:

o), LS| S
a{U} 0= 29, |:_ C1:| 5 1
—S ), :_[_Sl C, —,OCZ]
a{vl}(. 2) :Ll_Cl 1 a{U} q,
olut ™ 29, G,
a{vl} . lecz Sl
olu} G0, L Cj
}(:,1) = zi[ U3, + UG, —U,C, } g{“)l} D= _—1(u1C1 +pU,S, +u,S,)
d, | — u1C3 + pU3C4 - u283 q d,
. PULS, S, %(:’4) =_—1pu382
sl ¢ =0 [— C, } Z{q} q7S o
a{vl} - 7) = I—1(_U181—,0U3C2 —|—U2C:1)|:S1 :| @ 7)) = U, +oU 22_U2 . CO0S Q,
ol " 22 _c, Z{q} : a;
a)l -0\ -
a{vl}(h ) ={8} j =147 8{q}(" )= {O} ) =1,4,7




where we have:

C,=cos(qg,), S, =sin(q,)
C,=cos(q,+4,+q,), S,=sin(q,+/4,+9,)
C,=cos(2q9,), S, =sin(2q,)

C,=cos(q,+ p, +20,), S,=sin(q,+ /4, +20q,)

To obtain the generalized force we have:

SRR AN

4 }T a{vc}_l_{lzx Fy}a{vo}—f%
; ou, ou, ou, ou

j

The Kane’s method efficacy is proved if one implements this method by
using the computer programming.
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