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Lagrangian Equation of Motion

PUrpose:.

» To extend the approach in deriving equations
of motion (i.e. ) for Mechanical
Systems.

Jopics.
» Generalized Coordinates

» Lagrangian Equation of Motion for /ndependent Set
of Generalized Coordinates

» Lagrangian Equation of Motion for Dependent Set
of Generalized Coordinates

» Hamiltonian Principle




Hamilton’s Principles

It is an integral principle and considers the
configuration of a system between the time
interval (t, , t,).

Advantages; “ ”is:

1. Reduced to the evaluation of a scalar definite
Integral,

2. Coordinate system independent in expressing
the integrand.




Let us consider a system of N particles.
Using and the
we have:

N
o = [f7 —i(mﬁxf)]ﬁxf =0 or
B=1 dt

N
=Yt -, er’ =0 @y

o dt Y,
Y

Can be written as:




Recall that the Kinetic Energy for a System of
Particles Is:

1,
T==>m,r"-f

(11.23)




On the other hand, since Virtual Work is defined as:

N
SU =;iﬂ .or’ (11.24)

Substituting Equations (11.23) and (11.24) into equation (11.21), we obtain:

N
oU + ol :Z%(mﬂ[ﬁ -5[ﬂ) (11.25)
p=1

Integrating Equations (11.25) over the time interval t, to t; results in:

N
[[(@U+eTydt=[Ym,t-60"]¢ (1126
0 A1

but - 51’ (t,) = 517 () = 0




but - 51’ (t,) = 51’ (¢,) = 0

X;

1] N
| (U +oT)dt=0 @12 )

General Form of
Hamilton’s Principle

Xi(to) -

(11.26)




J; : (U +oT)dt =0 (11.27)

General Form of Hamilton’s Principle: It states that ¢

”. Hamilton’s Principle can be applied to both
Non-Holonomic and Non-Conservative systems.
y

A

Xi(ty) -

Xi(to) 1




Special Cases. when forces are and the
virtual work is related to the change in potential energy
V by , we have:

L =T -V = Lagrangian(a scalar function)
where: T =T(q,,q4,,t) ,and V =V(q,,t)
Then; Equation(11.27) becomes :

" oLdt =0=["5(T -Vt (11.28)

If the system Is Holonomic , then equation (11.28)
becomes:

S =5:1 Ldt=0= | = :1 Ldt  (11.29)




=5 :1 Ldt=0< |=['Ldt (129

b

Equation (11.29) states that the true path followed by a
to go from r(t,) to r(t,) is
such that the time integral “ 1 ” is

Proof of Lagrange’s Equation from Hamilton’s Principle:

[(8U +0T)dt =0 (.27
< Yl

\5[“0) — 5[(1:1) =0
For of I\l-Particles with 1 degrees of

freedom we have:




dys Oy, -+ Oy = Generalized Coordinates = {q,,} Space
r=r(dy, do, .--» dyn, ) = Vector Coordinates of Particles

Then, the Total Kinetic Energy for the system is:

13 A
T==>m,t"-f
2 &

T :T(q11q21"'1qm1q11q21"'1qm1t) (1130)
But, virtual work done by generalized forces are:
C U =) Q,A,
< .
[ (6T +3>°Q,,)dt=0 (11.31)
. m
Taking the variation of | using equation (11.30), and
noting that ”, we have:

&




=Y, + Y

m O, 5%

jtz[(—JrQ )X, +—§q ldt =0 (11.32)

Integrating the last term of Eq. (11.32) by parts, we have:

L OT d of
L@&' dt-[z Al - [ X g T

0 [SCIm(to) 8qm(tl) 0

substituting in equation (11.32), we have:




T +Q. Joq. dt=0 (11.33)
OC

m

b da ol
jtoz[_ct (acm)+

Since In , the generalized coordinates
form an independent set, therefore, the coefficients of each
In equation (11.33) must be . Therefore:

d (8T )—a—T—Qm m=12...M (1134

dt oq.° oq.




Example: A bead of mass m is free to slide on a hoop of
radius R as shown. The hoop Is rotating with the constant
angular velocity Q. Find the equation of motion using

Hamilton’s principle?
1 :

Let X, X, X5 be attached to the
hoop.

I =Rsinfe, —Rcos fe,

X1

v =—RQsin e, + ROcos fe, + ROsin Oe,

/‘@ N
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T = %my-y = %m[(QRsin 0)? + (ROcos )2 + (ROsinB)° =

mR? mR?

== O?%sin’ 0 + 7

V =mgR(1-cos 6)

2 2
mR 0O’ sin® @ + mR

L=T-V= 6> —mgR(1- cos )




o= 59+ o= MR2[)? sin 6c0s 6 — - sin G166 + MR2650
v v R

6’5@dt— j o4 RCOLE _ :2 st

0

Hamilton’s Principle

"SLdt=0—

to

j:z [-MR?0 + mR*(Q*sin & cos @ — %sin &)]oodt =0




ttlé]_dt 0=

fz [-MR?8 + mR?(Q?sin & cos 6 — %sin 0)]oedt =0

Equation of Motion

é+sin¢9(%—§22 cos ) =0
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