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Purpose:

 To extend the Energy approach in deriving equations  

of motion (i.e. Lagrange’s Method) for Mechanical  

Systems.

Topics:

 Generalized Coordinates

 Lagrangian Equation of Motion for Independent Set 

of Generalized Coordinates 

 Lagrangian Equation of Motion for Dependent Set 

of Generalized Coordinates

 Hamiltonian Principle
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It is an integral principle and considers the 

configuration   of a system between the time 

interval (t0 , t1).

Hamilton’s Principles

Advantages; “Dynamics Formulation” is:

1. Reduced to the evaluation of a scalar definite 

integral,

2. Coordinate system independent in expressing 

the integrand. 
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Let us consider a system of N particles.  

Using  D’Alemberts’s Principle and the Principle of 

Virtual Work we have:

(11.22)

(11.21)

Can be written as:
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Recall that the Kinetic Energy for a System of 

Particles is:

(11.23)

Variation in Kinetic Energy

Substitute in equation (11.22)
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On the other hand, since Virtual Work is defined as:

Substituting Equations (11.23) and (11.24) into equation (11.21), we obtain:

Integrating Equations (11.25) over the time interval t0 to t1 results in:

(11.26)
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General Form of 

Hamilton’s Principle
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General Form of Hamilton’s Principle: It states that “the true path 

followed by the dynamic system to go from r(t0) to r(t1) is such that

the time integral of the sum of the virtual kinetic energy change 

and virtual work vanishes when subjected to virtual displacements 

from the true path”.  Hamilton’s Principle can be applied to both 

Non-Holonomic and Non-Conservative systems. 

 
1

0

0)(
t

t
dtTU  (11.27)

xi

xi

xi(t0)

xi(t1)

t0 t1t

t

Varied Path

True Path

© Sharif University of Technology - CEDRA



By: Professor Ali Meghdari

Special Cases: when forces are conservative and the

virtual work is related to the change in potential energy

V by U = -V, we have:
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If  the  system  is Holonomic , then equation  (11.28) 

becomes: 
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Equation (11.29) states that the true path followed by a

conservative holonomic system to go from r(t0) to r(t1) is

such that the time integral “ I ” is extremized.
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Proof of Lagrange’s Equation from Hamilton’s Principle:
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Hamilton’s 

Principle

For  Holonomic System of N-Particles with m degrees of 

freedom we have:

© Sharif University of Technology - CEDRA



By: Professor Ali Meghdari

q1, q2, …, qm = Generalized Coordinates = {qm} Space

r = r(q1, q2, …, qm, t) = Vector Coordinates of Particles

Then,  the Total Kinetic Energy for the system is:
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But, virtual work done by generalized forces are:

Taking the variation of T using equation (11.30), and 

noting that “ t=0 ”, we have:
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substitute in (11.27) 
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substituting in equation (11.32), we have:

Integrating the last term of Eq. (11.32) by parts, we have:
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substitute in (11.31)

0     [qm(t0) = qm(t1) = 0
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Since in Holonomic Systems, the generalized coordinates

form an independent set, therefore, the coefficients of each

qm in equation (11.33) must be zero. Therefore:
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Example: A bead of mass m is free to slide on a hoop of

radius R as shown. The hoop is rotating with the constant

angular velocity Ω. Find the equation of motion using

Hamilton’s principle?

1. Motion: 

Let x1, x2, x3 be attached to the 

hoop.

x1

x2

Datum

Ωg

R



m

x3

321 sincossin eReReRv   
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2. Kinetic Energy: 

3. Potential Energy: Taking θ=0 as the datum, we have;  

)cos1( mgRV

4. Lagrangian:

)cos1(
2

sin
2

2
2

22
2

  mgR
mRmR

VTL 

© Sharif University of Technology - CEDRA



By: Professor Ali Meghdari

5. The Variation of Lagrangian:







 


222 ]sincossin[ mR
R

g
mR

LL
L 











To apply Hamilton’s Principle, we need to express the 2nd term in above 

equation in terms of δθ.  Integrating the 2nd term by parts results:
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The integrated term in the above equation vanishes by definition of the 

variation at the beginning and end of the path. Therefore, applying 

Hamilton’s Principle results:
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6. Applying the Hamilton’s Principle:

For the equality to hold, the integrand must vanish at all times. Because 

δθ is arbitrary, for the integrand to be zero, the coefficient of δθ must be 

zero.  Therefore, the Equation of Motion will results as:
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