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Purpose:

 To extend the Energy approach in deriving equations  

of motion (i.e. Lagrange’s Method) for Mechanical  

Systems.

Topics:

 Generalized Coordinates

 Lagrangian Equation of Motion for Independent Set 

of Generalized Coordinates 

 Lagrangian Equation of Motion for Dependent Set 

of Generalized Coordinates

 Hamiltonian Principle
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Definition: A “Generalized Coordinate System” is 

any set of variables {qm} which defines the position 

of a mechanical system.  Generalized coordinates 

are usually chosen as the best description of the 

mechanical configuration (i.e. Polar, Cylindrical, 

Spherical, etc.).  

Generalized Coordinates

Definition: “Degrees-of-Freedom” is the minimum 

number of generalized coordinates which adequately 

define the position of the mechanical system.  
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An analyst for convenience may choose to use more 

generalized coordinates than the number of degrees-

of-freedom of the system.  In this case, the set of 

generalized coordinates is not independent.  Therefore:

A free Particle in space has:  3-DOF

A free Rigid Body in space has:  6-DOF

A Structure has:  0-DOF

Example:

An Independent Coordinate Set: exists when the number

of generalized coordinates correspond to the degree-of-

freedom, and

A Dependent Coordinate Set (Constraints): exists when

we have a number of functional relations among the

generalized coordinates.
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Example: Consider the one degree-of-freedom system 

shown.
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Constraints are:
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Note that: In the Newtonian Mechanics, the momentum of

βth particle is:





i

i
x

T
P




 (11.2)

}{}{
mm

q

T
P




 (11.1)

Definition:                           is defined as the Generalized Velocity.

Definition:                                 is defined as the Generalized 

Virtual Displacement.

Definition:  The Generalized Momentum {Pm} is the

Set             .
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(11.3)

Definition: The Generalized Force Q ={Qm} is the set of 

coefficients of generalized virtual displacement {qm} in 

the expression of virtual work as:

Note that:  For a system of N particles, the working force

in the expression of work is:
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Example: Determine the Generalized

Forces for the double pendulum

shown?
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Work done from equilibrium position to the existing

position is:
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Some Useful Relations: Functional relations between

Cartesian coordinates and generalized coordinates;
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2). By Chain Rule expansion of derivatives:

(11.6)
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4).  From relation (11.6), since       is a linear function of        ,

we have:
ix mq

(11.8)
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5). By Chain Rule expansion of derivatives, we can write:

(11.9)
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5). By Chain Rule expansion of derivatives, we can write:
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Proof:
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Lagrangian Equation of Motion
for

(Independent Set of Generalized Coordinates)

A mechanical system classified according to the 

coordinate description generally fall under one of the 

following categories:

Rheonomic Systems: The description of configuration by 

the generalized coordinates varies with time throughout 

the dynamic process.

..),( CoordsGenqtqfx mm

ii  (11.10)

Scleronomic Systems: The description is not explicitly 

time dependent.
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Theorem-43 : Throughout the dynamic process of a

mechanical system, the motion in the Independent Set

of generalized coordinates {qm} will satisfy the equation:
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Proof: Based on Leibniz Principle;      T - U = 0

In {xi} space: Kinetic Energy expression for a single

particle is;
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Going to {qm} space: Since by eq. (11.7);
m

m

i

i q
q

x
x 






UdVUVdVdUbut

q
q

x

x

T

dt

d
T m

m

i

i












)()(:

])([ 


U V

i

i

i

i

i

i

iiiiii

x
x

T

dt

d
T

dx
x

T

dt

d
dT

x
x

T

dt

d
xxm

dt

d
xxmxxm

dt

d
T

 )(

)(

)()()
2

1
(

























{Virtual Change in K.E. in terms

of Virtual Displacement}
(11.13)
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Eq.(11.8) Eq.(11.9)

(11.14)
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(11.3)
From Equations (11.14) and (11.3) we have:
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Since qm is independent and arbitrary, then:
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Lagrangian Equation of Motion for Independent Set of Generalized 

Coordinates. Applies to both Scleronomic and Rheonomic Systems. 
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Example:  Express Differential Equations of Motion of 

the following system:
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3. Virtual Work:   Free Body Diagram 
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, we can similarly solve for the second 

equation of motion.
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Substituting into the Lagrange’s equation, we get:
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Example: Express Differential Equation of Motion of

the YOYO shown (an example for Rheonomic System

where xi= fi(q
m,t) )?

Consider the Pendulum as a 1-DOF system described 

by “”.  Then “F” (tensile force) does no virtual work, 

because “L” does not change in virtual displacement, 

which holds time constant.

1. Motion:

Initial Length is; L0

Current Length is; L=L0-vt
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0 = (By Virtual Concept)
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2. Kinetic Energy:
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3. Virtual Work:   is the only variable,

and Free Body Diagram;
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Note that: xi=fi(,t)
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4. Apply Lagrange’s Equation of Motion:
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(For Small Angles)

(Negative damping results in an Unstable system)
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Another Approach to the YOYO Problem: “” and “L” are

constrained generalized coordinates that satisfy L=L(t).  

Then, “L” increases by “L” in a virtual movement, and 

“F” does virtual work.  Then, we need to formulate the 

problem by Lagrange’s Equation for Dependent Set of 

Generalized Coordinates.
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