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Purpose:

 To Study Energy Principles of Dynamics.

Topics:

 Kinetic Energy

 Work 

 Leibniz (Leibnutz) Equation of Motion

 Conservative Force Field
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By: Professor Ali Meghdari

Kinetic Energy (K.E.): For a single particle is 

defined by its inertia property and speed.

K.E. for a System of Particles:
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m vK.E. for a Single Particle:

(10.1)
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Theorem-34: The Total K.E. of a constant mass system is

equal to the K.E. due to the equivalent mass at the mass

center (K.E. due to motion of the mass center) plus the

K.E. due to the motion of individual particles with respect

to the mass center.

(10.4)
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(The first moment of a mass system 

about its mass center is zero)
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Kinetic Energy of a Rigid Body:

Theorem-35:  For a Rigid System, the expression for T(e)

is the same as before (K.E. due to motion of the mass center), 

and T(i) is completely defined by the Central Inertia Tensor “                       

”     and the angular velocity vector “   ”of the Rigid Body. 
C

ijI

(10.5)
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Proof:
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(10.5)
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In terms of Principal Coordinates at “C”:

(10.6)
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By: Professor Ali Meghdari

Theorem-36:  For a Rigid System, when there is one zero

velocity body point A (a fixed point or momentarily has 

zero velocity), the Total Kinetic Energy can be readily

obtained by referring to that point as the moment center.

)(
2

1 2

33

2

22

2

11  AAA IIIT 

In terms of Principal Coordinates at “A” :

(10.8)

(10.7)
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K.E. with reference to the Instantaneous Axis of Rotation

of the Rigid Body:  

Let {xi} be chosen such that x is the Instantaneous Axis

of Rotation; then:
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And for a Rigid Body in Plane Motion:

(10.9)

(10.10)
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Example: A conical shell of height “h”, cone angle “” and

mass “m” rolls without slipping on a horizontal plane 

about a vertical axis.  If its angular velocity about the 

vertical axis is “”, determine the Kinetic Energy of the 

conical shell?

x1x2

A

h

e

 m



x3

Method I: Use Principal

Coordinates at “A”.
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(Absolute velocity along the 

contact line)
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Method II: Use Instantaneous Axis of Rotation.

By transform equation of inertia tensor, we have:
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Work: Work applied on a system depends on 

both the force field and the displacement of 

the system in the field.

Definition: The work done by a force on a particle

as it travels along the path  is defined as:



B

A

F



x

y

z

o

r

dr : Differential displacement of

the particle along the path .

(10.11)
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By: Professor Ali Meghdari

Differential Expression of Work:

(10.12)

Power: Time rate of doing Work:

Theorem-37:  For a system of particles, while the totality 

of the internal forces and that of internal moments of force

do vanish, the internal forces do contribute to the total 

work done on the system.

Internal Work: The work done by internal forces on the

system.

(10.13)
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External Work: The work done by external forces on the 

system.

(10.14)

Theorem-38:  The Total Work done on a system of particles

is the combination of the external and internal works.

(10.15)

Note:  Since the interior forces are equal, opposite and 

collinear pairs, they will do work only through extension 

and contraction of the pair of corresponding particles. 
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Theorem-39:  The value of Internal Work is independent of

the reference frame.

Proof:  Choose any arbitrary reference frame with reference

point “O” and angular velocity “”.
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(Internal work as observed in the arbitrary reference 

frame, since the internal forces are independent of the 

reference frame.)

(10.16)

Rigid Bodies:  Are the components of most mechanical 

systems.  Therefore, we have:

Theorem-40:  For a Rigid Body the Internal Forces do

no work.  This is obvious when the reference frame is 

attached to a rigid body. (10.17)
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Theorem-41:  For a Rigid Body, the work done can be 

equated to the sum of the work done by the resultant 

force in displacing any convenient point “A” in the rigid 

body and that done by the resultant moment about the 

same point in rotating the rigid body.

(10.18)

Proof:
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Note: The most significant reference points are:

1. The mass center, A = C

2. A fixed point, vA = 0

List of Elementary Force Fields for which the computation of 

work is usually simple.

a) Non-Working Forces:  Forces at a fixed point or   

normal to the path. (i.e. Reactive forces at fixed 

support and normal reaction on a surface)

b) Contact Forces: Work is the inner product of the 

force and the total displacement of the particle.

(10.19)
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c) Simple Spring Forces: (i.e. like extension spring and leaf 

spring).


f

i

e

e
SS dxfU (10.20)

(ef: final deflection, ei: initial deflection, fs: spring force,

where for Linear Spring: fs=kx , and k: spring constant)

d) Simple Torsion Spring: (i.e. torsion bars and coil spring).




dMU SS
(10.21)

(Δ: planar angular displacement, MS: spring torque, 

where for Linear Torsion Spring: Ms=k , and k: torsion

spring constant)
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d) Friction Force: In general, work done by the friction force 

is path dependent.  Certain friction forces such as Pure 

Rolling Friction does no work.

Example: A simple pendulum of mass “m” is pivoted 

through one end of a lightweight

connecting rod “L” as shown.  

Determine the work done on the

system in displacing from its 

equilibrium position to a given 

angular position. L

m



Δr

O
x1

x2
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Method (I): Refer to free-body and 

consider the path of the particle.

L

m



Δr

O

x1

x2

mg

R
-mge2 : working force acting on the

particle which displaces by:

Δr = Lsine1+ L(1-cos)e2

Method (II): consider the pendulum 

assembly as a Rigid Body that pivots 

about “O”.  Then, the gravitational force 

has a moment about “O” as:

(integrating gives the same result)
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