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Purpose:

 To Study Mechanics in Non-Newtonian Reference  

Frame (NNRF).

Topics:

 Kinetic Principles of a Particle in a NNRF.

 Kinetic Principles of a System of Particles & Rigid 

Bodies in NNRF.
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Kinetic Principles in a NNRF for a System of Particles

& Rigid Bodies

P-Principle for a System of Particles:  similar to P-Principle

in NRF, the equation relates the Global Admissible Forces

to the change in Kinetic State of the mass center.
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The Admissible Forces are:

(9.6)
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Note: All Global Coordinate Forces act at the mass center of the 

material system.
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H-Principle for a System of Particles:  with respect to a

moment center fixed to the NNRF, the observed time rate

of change in moment-of-momentum is equal to the totality

of (effect of) all admissible moments. 

{Global Moment-of-Momentum}



N

O

vmrH
1







{Global Moment-of-Forces}

(9.7)
O

i

O

iii

O

HMoruHM  

© Sharif University of Technology - CEDRA



By: Professor Ali Meghdari

}2{

)},({

},{

},{















vm

rm

rm

am
O





 

Admissible Forces on the Free Body Diagram are:

1. Newtonian Forces:

2. Non-Newtonian Forces:

a) Individual Particle Expression:
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Admissible Forces on the Free Body Diagram are:

b) Global Expression (all particles) 
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And from H-Principle:

{ith-component}

(9.8)
O

ii

N
OO

i HMM


 


][
1



© Sharif University of Technology - CEDRA



By: Professor Ali Meghdari

O
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Theorem-30 :  The moment of the Global Coordinate Inertia

“               ” is equal to the totality of those of individual 

coordinate inertia, “                        ”.
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Theorem-31 :  The totality (effect of all individual forces) of

individual Euler’s forces “                            ” is equivalent to the

Global Euler’s Force “                        ”, and a Non-Newtonian

Couple “                          ” called the Euler’s Couple.
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Proof:

[Total moment of individual Euler’s forces about “O”]i =

(a)
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Similarly; [Moment of the Global Euler’s forces about “O”]i =

(b)
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The Euler’s Couple is defined as the difference between

equations (a) and (b) as:

(9.9)
(by Transfer Theorem)
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Remarks:
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Theorem-32: The totality effect of all individual Centrifugal

Inertias, “                                      ” is equivalent to the Global 

Centrifugal Inertia, “                               ”, and a Non-Newtonian

Couple, “                                  ” called the Centrifugal Couple.
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Proof:

Let        be the moment of the centrifugal inertia of βth particle

about  the moment center “O”, then:
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Similarly, the moment of the Global Centrifugal Inertia about the

moment center “O”         ,        is:
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Finally, the Centrifugal Couple is obtained as the difference

between equations (a) and (b):
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(9.10)(from Transfer Theorem)

Note that the expression is independent of the moment center “O”.
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Theorem-33:  The equivalent system of the entire system of

individual Coriolis Forces, “                                ”consist of the

Global Coriolis Force, “                           ”, and a Non-

Newtonian Couple, “                                               ”called the 

Coriolis Couple.
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Proof:

Let           be the moment of the Coriolis force on the  βth particle 

about  the moment center “O”, then:
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Similarly, the moment of the Global Coriolis Force can be

shown to be :
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(b)

)()]([
CC

ij

C

j

C

iij

C

k

C

k

O
vrmuxxxxm

dt

d
M  

Conclusion: The equivalent system of the individual 

coordinate forces consists of the set of Global Coordinate

Forces (Equation 9.6) acting at the mass center, and

three Non-Newtonian Couples (Equations:9.9, 9.10, 9.11).
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Then, the Coriolis Couple is:
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Observations:

1). Coordinate couples all vanish as the material system is

reduced to a single particle.

2). The coordinate couples are associated with the rotational

phenomena of the coordinate system.  In translatory

coordinates, the coordinate couples all vanish.

3). Remember that Global coordinate couples are the result 

of replacing individual forces by an equivalent system. 

Therefore, they exist only when the global force system

is used.

Special Cases:

I). The Euler’s Couple vanishes provided that the reference

frame rotates at a constant angular velocity.

}tan:,0{ tconswhenC 
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II). The Centrifugal Couple vanishes when the spin axis of 

the reference frame is parallel to a central principal axis

of inertia of the mass system.
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III). The Coriolis Couple vanishes under the following 

combined conditions throughout the dynamic process:

(a).  The reference frame’s spin axis and the relative

angular velocity of the mass system are both 

parallel to a same central principal axis of inertia.

(b). The system is rigid.

Statement (a):   

Statement (b):

{if x is the spin axis}
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Individual Force Set Global Forces & Couples Force 

Action

They all

act at

the

Mass 

Center
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Example: A horizontal centrifuge is spinning at a constant 

speed .  A uniform slender bar is held in equilibrium along

the radial line by a torsion spring “k” at the end, which is 

pinned to the centrifuge at a 

distance “a” from the spin 

axis.  Determine the 

oscillation of the bar? x1

k

l

C

a

x2



Cr

(constant)

O
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1. Free Body Diagram:

O
O2

O1

k

l

C

2. Kinematics Analysis:  Set KRF on the centrifuge with

reference point at “O”.
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Method I: (By NRF-Earth)
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3. Kinetics Analysis:  For a Rigid Body constrained in

plane motion, with point “C” being an admissible

moment center, we have:

Substitute Eq. (a) in Eq. (b), and find O1 and O2 , then 

substitute the results into Eq. (c) to have:
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Method II: (By NNRF)

Choose NNRF as the centrifuge

with reference point at “O”.

1. Free Body

Diagram:
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Note that: there exist no coordinate couples,since the reference 

frame rotates at a constant angular velocity and therigid

body is in plane motion, and a central principal axis of 

Inertia is assumed to be perpendicular to the plane.

2. Kinetics Analysis:  Now, “O” is a fixed point in the NNRF,   

and therefore an admissible Eulerian Moment Center.    

Therefore:
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Remarks:

This example should not be constituted to reason that 

the NNRF is always simpler, but it only shows that the 

analyst should be free to choose whatever reference 

frame that best simplifies the analysis and must be 

specific in stating his frame of reference.
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