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NON-NEWTONIAN REFERRENCE
FRAME

| Purpose:

» To Study Mechanics in
(NNRF).

Topics:
» Kinetic Principles of a Particlein a NNRF.

» Kinetic Principles of a System of Farticles & Rigid
Bodliesin NNRF.




Kinetic Principles in a for a System of Particles

& Rigid Bodies
P-Principle for a System of Particles: similar to
In , the equation relates the
to the change in of the
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The are:

f=f-ma®-—mQxr®-2mQxv" -mQx(Qx7°)

—2mQx V" (9.6)
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Note: All Global Coordinate Forces act at the mass center of the

i material system.




H-Principle for a System of Particles: with respect to a
moment center fixed to the , the observed time rate
of change in moment-of-momentum is equal to the

( ) all admissible moments.

u. or M. =H. (9.7)




1. Newtonian Forces: i
2. Non-Newtonian Forces:
a) Individual Particle Expression:
{m,a’},
{-m,Qxr"},
{=m, Qx(Qxr")},
{-2m,Qxv"}




b) Global Expression (all particles)
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And from ' i)
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\ M'O = [ZN;M;L = I_I;io (9.8)
g




Theorem-30: The moment of the Global Coordinate Inertia

O
“ —Ma ” is equal to the totalitg of those of individual

coordinate inertia,* — M ad »,
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Theorem-31 . The totality (effect of all individual forces) of

individual FEuler’s forces “ —.m B QC X E'B” is equivalent to the
Global Euler’s Force — MQ2XT » and a
R —C .
“ C =—1 -Q ”called the Euler’s Couple.




[Total moment of individual Euler’s forces about “O”]; =
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Similarly; [Moment of the Global Euler’s forces about “0Q”]; =
VIS _C N =C —CoC —C<Ch(
I\/Ii :[_[ Xm(QX[ )]. :—m(xk Xy 5ij — X Xj )Qj

The IS defined as the difference between
equations (=) and () as:

Ci =(a)- (b)——[I m(X, X, &; — X X C)]Q

——
e ~C -(by Transfer Theorem)

j =-1-Q (9.9)
By: Professor Ali Meghdari
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Ax(BxC)=(A-C)B-(A-B)IC=ACB-ABC
C,=6,C

[AX(BXQ)]. = AkaBi - AijCi = (Aka5ij B AjCi)BJ’
Therefore :
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Theorem-32. The totality effect of all individual Centrifugal
Inertias, © —M,Qx (L2x )7 s equivalent to the G/obal
Centrifugal Inertia, © —MQx (QXT")» and a

«C =-Qx (|=_C -€2)” called the Centrifugal Couple.
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Let M [)be the moment of the centrifugal inertia of Bt particle
about the moment center “O”, then:
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Similarly, the moment %f the Global Centrifugal Inertia about the
moment center “O” M is:

—O0

M~ =-T Xm[QX(QXEC)]=—m(Q-EC)EC><Q=

= —Qxmlr” x(@x )] = -QxmIX, X, & ~ X X710, u; =
\
= -Qx(I0 Q) [
- =€(. —eq.
Finally, the IS obtained as the difference

between equations (a) and (b):

C =M - = -0x[((° - I2)- Q1 =-0x(1° -0)

(from Transf\e(r Theorem) (9.10)

Note that the expression is independent of the moment center “O”.




Theorem-33. The equivalent system of the entire system of

individual Coriolis Forces, “* —2m 5 X \Zﬂ ’consist of the
Global Coriolis Force, “ — 2mg2 x \ZC ”, and a

- (_:** — _|TC .Q_Qxﬁzﬁledthe
Coriolis Couple. N -
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Let Mﬂ be the moment of the Coriolis force on the Bt particle
about the moment center “O”, then:
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Similarly, the moment of the Global Coriolis Force can be
shown to be :

— 0

M~ =—T" x2m(@xV") =

= —mF" % (QxV")—mV" x (QxF")-mQx (F° xV") =




—0 d

—C—C —C =C
M= —[M(X X 0y = X% )IQ Uy —Qx (MP™ x V)
Then, the Coriolis Coupleis:
" =3 M —M° = L[ - m(xExC8, - XCXENQ,u, ~Qx[A° ~ F° xmy®]=
=1 1\ J
_ c B Y
=—I5Qu, -QxH" =-I -Q-QxH" H°
e - C —C
C =-1 -Q-QxH (9.11)

Conclusion: The equivalent system of the individual
coordinate forces consists of the set of
(Equation 9.6) acting at the mass center, and
(Equations:9.9, 9.10, 9.11).




Observations:

1). Coordinate couples all vanish as the material system is

reduced to a single particle.

2). The coordinate couples are associated with the rotational
phenomena of the coordinate system. In translatory
coordinates, the coordinate couples all vanish.

3). Remember that Global coordinate couples are the result
of replacing individual forces by an equivalent system.
Therefore, they exist only when the global force system

IS used.

Special Cases:

). The vanishes provided that the reference
frame rotates at a constant angular velocity.

{C =0,when : Q = cons tant}
By: Professor Ali Meghdari




11). The vanishes when the spin axis of
the reference frame is parallel to a central principal axis
of inertia of the mass system.

111). The vanishes under the following
combined conditions throughout the dynamic process:

(a). The reference frame’s spin axis and the relative
angular velocity of the mass system are both
parallel to a same central principal axis of inertia.

(b). The system is rigid.
Statement (a): Q; =Q5,,, 1. =1,6,

ja ! T«

1 1 C 1 C—
Statement (b): H =1,0,0,

—_%k

C, =-1°Q6,, — 7,065, (I°®,)5, =

=-1°Qs5,, //Q =0 (since 1S =constant)

By: Professor Ali Meghdari



Summary:
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Example: A horizontal centrifuge Is spinning at a constant
speed Q. A uniform slender bar is held in equilibrium along
the radial line by a torsion spring “k” at the end, which is
pinned to the centrifuge at a

distance “a” from the spin

axis. Determine the
oscillation of the bar? °

" O (constant) .




Method I: (By -Earth)

(constant)-.,

2. . Set KRF on the centrifuge with
reference point at “0O”.

a® =a° +a° +QOxT° +2QxV° +Qx(QxTF")
By: Professor Ali Meghdari




e = —g(cosé’g1 +sinéu,)

<l

¢ = gé’(sin Ou, —cosou,)

|

‘= gé(sin fu, —cos Au,) +§9'2(COS<991 +sin6du,)

a° =(-a0’ +§ésin6’+§92 cos@+§£)2 cos @ + £ 62cos O)u, +

(—gécose+g6’2 sin H+§Q2 sin@ + £&sin O)u,




3. . For a Rigid Body constrained in
plane motion, with point “C” being an admissible
moment center, we have:

,
f —maC 0,u, +O,u, =ma"

< C-< mgg
\M =1"a —kH+O(—cosH) O(—smé’)—?é?

Substitute Eqg. (a) in Eg. (b), and find O, and O, , then
substitute the results into Eq. (c) to have:

2 2 2 2
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2 2

%Qésin 0 cos 6] = 0 =
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é_BaQ sin @ + 3k2
2 /! m/
Method I1: (By )

Choose NNRF as the centrifuge
with reference point at “O”.

6=0 (D.EM.)
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there exist no coordinate couples,since the reference
frame rotates at a constant angular velocity and therigid
body iIs in plane motion, and a central principal axis of
Inertia is assumed to be perpendicular to the plane.
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/mQX(QXEC)

: Now, “O” is a fixed point in the NNRF,
and therefore an admissible Eulerian Moment Center.
Therefore:

M =1l 2 e —k6’+(maQZ)(gsin9):%m€2é
By: Professor Ali Meghdari
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Remarks:

This example should not be constituted to reason that
the IS always simpler, but it only shows that the
analyst should be free to choose whatever reference
frame that best simplifies the analysis and must be
specific in stating his frame of reference.
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