

INTRODUCTION TO ROBOTICS (Kinematics, Dynamics, and Design)

SESSION # 2: HISTORY OF ROBOTICS

Ali Meghdari, Professor School of Mechanical Engineering Sharif University of Technology Tehran, IRAN 11155-9567 Homepage: http://meghdari.sharif.edu

Applications of Robotics:

A Historical Overview

Topics:

→ A Brief History of Robotics → Robot Definitions → Robot Applications in Various Fields & Industries

,我们就是你们的你,你们就是你们的你,你们们们的你,你们就是你们的你?""你们,你们就是你们的你?""你们,你们们你不是你们的你?""你们,你们们你们不是你们的,

• Human desire has always been to duplicate/copy himself (mechanical dolls to play music mid-1700).

- Great civilizations of the past (Romans, Greeks, Egyptians, Persians) were based on Slavery.
- Robots can act as slaves without injustice. They can eliminate many of today's economic injustices.

 In 1920, the word Robot was first used in a play by Karel Capek entitled "Rossum's Universal Robots" performed in Paris. In this play small artificial creatures strictly obeyed their master's orders. In Czech and Russian they were called Robotnic, from "Robota" = hard work, drudgery. Rossum (Rozum) = Reason, Wisdom, Intellect.

These robots eventually turned against their creators, and two of them named Primus and Helina fell in love with each other (Cohen J., Human Robots, 1966; Kato I., Robotica J. 1983).

 The first robots were thought to be evil humanlooking machines.

 In 1950, Isaac Asimov introduced the idea of good robots (Androids) in his stories and popularized the word "Robotics".

(Lost in Space, 1964)

Asimov's Laws of Robotics

- A robot may not injure a human being or, through inaction, allow a human being to come to harm.
- A robot must obey the orders given it by human beings except where such orders conflict with the First law.
- A robot must protect its own existence as long as such protection does not conflict with the First or Second law.

Important Events in Robotics

Important Historical Events in Robotics	Year
Fabrication of the first android clocks in Germany and Switzerland	1400
Fabrication of mechanical dolls that could play music, and draw pictures	1770
The first automatic calculator/computer	1870
First use of the word "Robot" by Carl Capek in RUR play	1921
Creation of the first paint spraying machine for a known motion trajectory	1930
Fabrication of the first controller at Harvard University	1942
Design and fabrication of the first teleoperator	1944
Fabrication of the first NC machine tool at MIT	1952
Design of the first programmable robot by George Devol	1954
Denavit-Hartenburg representation to describe robot configuration	1955
Joseph Angle-Berger starts the Unimation Co. using Devol's robot design	1956
The first Unimate robot installed at Ford Motor Co. for die-casting operation.	1961
Design of the Stanford Manipulator	1970
Design and Fabrication of the Cincinnati-Milacron T ³ industrial robot	1974
The 1 st PUMA (Programmable Universal Machine for Assembly) robot at G.M.	1978
Fugitsu-Fanuc Co. started the first automated factory	1980

Robot Definitions

→ Webster's Dictionary:

"An automatic apparatus or device that performs functions ordinarily ascribed to human beings" (not a very accurate description, Ex: washing machines, traffic lights, etc.).

→ Robotics Institute of America:

"A re-programmable multifunctional manipulator designed to move materials, parts, tools, or specialized devices, through variable programmed motions for the performance of a variety of tasks" (more accurate and complete).

→ Working Definition:

"A physical agent that has an intelligent connection between sensors and actuators".

Fact and Fantasy

Fantasy

Human-like capabilities

Complex perception

Complex reasoning

Fact

Bug-like capabilities

Primitive perception

Primitive "reasoning"

Two Major Types of Robots

- Industrial Robots
 - Operates in a stable and known environment
 - Fixed or limited mobility
 - Relatively simple control program
- Mobile Robots
 - Operates in the "real" world
 - Mobile!
 - Requires a high degree of autonomy

Advantages of Industrial Robots

- Flexibility in production.
- High productivity.
 - Improve quality of products.
- Improve quality of human life (safety of personnel) by performing the undesirable jobs.

- Robot Manipulators were first realized in 1945 with the onset of nuclear age.
- In 1947-48, scientists at M.I.T. and General Electric Co. developed manipulators to handle toxic nuclear/radioactive materials.
- "Tele-operators" were the first mechanisms developed for handling of nuclear materials. They were later called as the "Master/Slave Manipulators". They are remotely controlled by the human operator from a distant safe position by means of a device or joystick, which is kinematically similar to the manipulator itself.

Master/Slave Manipulators

Master/Slave Manipulators

Manipulators Suitable for Nuclear Operations

Mechanical Master/Slave

- Servo Master/Slave
- Power Manipulator
- **Robotic System**

Servo Master/Slave

Manual Handling of Toxic Materials in Glove Boxes

The Glove Box Chain

Applying Robots in the Glove Box Environment to Automate Usual Tasks

Applying Underwater Robots for Nuclear Reactor Vessel Inspection

Periodically, reactor vessel welds must be ultrasonically inspected to ensure the pressure boundary integrity. (Underwater and radiation environment place high demands on robotic inspection systems).

General Applications of Robotics in Industry

- Arc Welding
- Assembly Operations
- Die Casting
- Forging
- Glass Placement
- Grinding
- Handling Dangerous Materials
- Inspection of Parts, Produce, Livestock,...
- Injection Molding
- Laser/Waterjet Cutting
- Lawn mowing

Machining Machine Loading Milking Cow Packaging Polishing Spray Painting Spot Welding

© Sharif University of Technology - CEDRA

Robotic Milking Systems

Robots clean the area to be milked and place the suction cups using vision system

VMS robotic milking.flv

Robotic Tree Cutter

© Sharif University of Technology - CEDRA

Robot Samples

LET YOUR ROBOT DO THE MOWING ...

