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Purpose:

 To Study Kinetic States and Principles of Rigid Bodies.

Topics:

 Kinetic States of a Rigid Body.

 Kinetic Principles of a Rigid Body.

 Rigid Body Rotation about an Invariant Axis.

RIGID BODY DYNAMICS
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Kinetic Principles of a Rigid Body: Consider a rigid body

as shown, where point “A” is a body point, then: 

O (fixed)

Cr

Ar

Cρ
C

A

Momentum Principle (P-Principle)

for the Rigid Body is:

Pamf
C  (8.7)

C
vmP 

In Chapter-6 we showed that for a

system of particles, with the general

moment center “A”, and                , we have;

)( PvHM
AAA
  (6.23)

Momentum of Momentum Principle

(H-Principle) for the Rigid Body is:
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However, if 

Definition: A moment center satisfying the conditions

stated above is called an Eulerian Moment Center.

Then:
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Equation (8.9) is referred to as the Euler’s Equation.
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Generalized form of Euler’s Equation:

Moment of Momentum Principle (H-Principle) in terms of a

rotating coordinate {xi} with angular velocity Ω may be 

written as:
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IHwhereHuHM   (8.11)
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Let {xi} to be the body coordinate (fixed to the body),

then: Ω ω , and {      } will form a constant set. 

Therefore:
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{Very Important, Gen. Form of Euler’s Equation, Actually

Coordinate Independent }
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(8.12) 

In terms of Principal Coordinates at the Mass Center, or

a Fixed Point “A” in a rigid body that is in a state of pure

rotation, Equation (8.12) takes on the form:
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Note: Free Rotation of a rigid body is generally due to the absence

of an external resultant moment about its mass center.  Many

dynamic problems are of this nature, and the only force applied

to them is from gravity.  In these cases, Euler’s Equations about

the principal axes at the mass center will take the following form:
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(8.14)
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A More Familiar Form of Euler’s Equations of Motion:

(8.13)
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In other words, in order for such a situation to exist, moment

of momentum about the mass center must be constant 

(        = constant), similarly the system must also be 

conservative (meaning that the sum of potential and kinetic

energy of the system must always be constant), and the 

total kinetic energy of rotation must also be constant.

C
H

C
H = Constant

Total K.E.)Rot. = Constant

K.E.)Sys. + P.E.)Sys. = Constant = (conservative system)

Equations (8.7) and (8.9) together (Newton and Euler’s 

Equations), form the General Equations of Motion for

a Rigid Body.



© Sharif University of Technology - CEDRA By: Professor Ali Meghdari

Example:

A turbine rotor assembly is dynamically equivalent to a 

solid rotating cylinder.  The mounting is inadvertently 

misaligning by “0.1%” from the axis of rotating symmetry.

Determine the bearing load due to the unbalance at a 

uniform speed of “1000 rad/sec”.  The rotor assembly has

a mass of “200 kg”.

Solution: x3

x1

2 m

1.5 m

0.5 m

RB

A

B

ω

1000

C

RA

x2

1
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x3
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In terms of the principal body coordinates {xi}, the principal

moments of inertias are:

The angular velocity vector “ω” is:

0,sec/1000
1000

3232  


 andraduuuu (ω is uniform).
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Now, applying Eulerian Equation we have:

Therefore, the unbalanced force is cycling at a rate of

1000 rad/sec = 9550 RPM, where the shaking force is 

quite damaging.

This moment is provided by bearing reactions.  Since the

moment arm = 2 m, then:

 ,12500 NRR BA
to the spin axis
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Rigid Body Rotation about an Invariant Axis:

Consider a rigid body as shown:

Let: “xβ” be the invariant axis of rotation,

and “A” be an Eulerian moment center

for the rigid body, therefore: 

  eande  , where;

eβ is constant, and therefore

ω and α have invariant

directions.

Now, let us choose a body 

coordinate {xi} such that

uβ = eβ , thus: 

xβ
βe

A

ω

α

Rigid Body
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we have:
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for β = 1, we have:

(8.16)
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© Sharif University of Technology - CEDRA By: Professor Ali Meghdari

2

21323

222

2

32121







AAA

AA

AAA

IIM

IM

IIM







for β = 2, we have:

(8.17)

Note that: in planar motion if “xβ” is not the principal axes, 

then products of inertia exists, and if α = 0, that does not

mean that M = 0.

Theorem-26: For a rigid body in plane motion, the set of

kinetic equations are:

OO
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(8.18)
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where; MO: Moment about an axis ┴ to the plane of motion

at “O”.

IO : Moment of Inertia about an axis ┴ to the plane 

of motion at “O”.

O : An Eulerian Moment Center.

Theorem-27: Equation (8.15) implies that momentless

rotation (free-rotation) about an axis of fixed orientation is

possible provided that the axis is a principal axis of inertia 

of the rigid body at any point on the axis of rotation.
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(8.18)
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Theorem-28: Free Rotation of a rigid body about an invariant

axis is stable provided that the axis of rotation is a central

principal axis corresponding to either the maximum or the 

minimum principal values.

Now, introduce the disturbance:  

0
,)(   O , such that:

100
}0,0,{)0( u 

Proof:

Consider a rigid body, and let it spin about its central

principal axis “x1”.

Originally let it have an angular velocity:  
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Note that: prior and after disturbance, there is no external

moment. From Euler’s Equation, we have:
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Now we have;

O(ε2)≈ 0
(so small)
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and similarly, 
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Stability Condition mandates that the coefficients of

must be positive.  Therefore;

CI
1

This condition holds if and only if the “     ” is the Maximum

or Minimum principal value (a mathematical idealization).

Note that: in reality due to internal damping there is only

one stable axis of rotation, and that is the principal axis 

corresponding to the maximum principal value of inertia.
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