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Purpose:

 To Study Kinetic States and Principles of Rigid 

Bodies.

Topics:

 Kinetic States of a Rigid Body.

 Kinetic Principles of a Rigid Body.

 Rigid Body Rotation about an Invariant Axis.
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Kinetic States of a Rigid Body :

Theorem-23: The Momentum of a rigid body is equal to its

mass times the velocity of the mass center.

(8.1)
C
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C
mvPorvmP 

Theorem-24: The Central Moment of Momentum for a rigid

body is equal to its central inertia tensor times the angular

velocity vector.
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Theorem-25: The Moment of Momentum vector about a

general body point “A” in the rigid body can be expressed 

as:

 
AACA

IvmH (8.4)
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Equation (8.2) in expanded form is:

(8.3)

© Sharif University of Technology - CEDRA



By: Professor Ali Meghdari

 
i

x

Proof :

Consider the rigid body shown;

: its origin is located at the fixed point “O”. 
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For a rigid body, we have:
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but; 
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dm xxorrr  Since                                                                      is  a constant

magnitude vector, and the point “A” is a body point, then 

Now, the i-th component of the 2nd term in 

equation (8.5) may be expressed as:


m

C
dmm 

and from the definition of mass center we have:     

, substituting results;
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m

ACA
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However, if point “A” is selected such that 

,Then equation (8.4) reduces to:

j
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IHorIH   (8.6)

Substituting the result into equation (8.5), we have:

 
AACA

IvmH (8.4)
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Example: A thin disk of mass “m” and radius “R” is spinning

about a fixed axis as shown.  Determine the Central Moment of 

Momentum in terms of:

(a). the principal coordinates?  (neglect the disk thickness).

(b). the coordinate with the rotating axis being as one of 

the coordinates? 
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(a). In terms of principal coordinates {xi}:

From symmetry, the coordinate {xi} is established in

the principal directions;
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The angular velocity ω in terms of principal coordinates is:
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, then;
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(b). In terms of coordinates oriented along the rotating axis

{     };  Let us first setup the direction cosines such that:
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Then, using the transform equation (7.25), we can write: 

, and
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Then, the Central Moment of Momentum is: 
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; where , and;

© Sharif University of Technology - CEDRA



By: Professor Ali Meghdari

Observations :

 Although the spin axis is fixed, the moment of momentum has

components along the other axes.

 Even when “ω” is constant, while the moment of momentum

components may be constant in the body coordinate {xi}, the moment of

momentum vector will rotate about the rotation axis at a speed of “ω”.

 The time rate of change of moment of momentum due to the change

in direction is an indication of presence of an exterior moment on the

body.
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Kinetic Principles of a Rigid Body: Consider a rigid body

as shown, where point “A” is a body point, then: 

O (fixed)

Cr

Ar

Cρ
C

A

Momentum Principle (P-Principle)

for the Rigid Body is:

Pamf
C  (8.7)

C
vmP 

In Chapter-6 we showed that for a

system of particles, with the general

moment center “A”, and                     , we have;

)( PvHM
AAA
  (6.23)

Momentum of Momentum Principle

(H-Principle) for the Rigid Body is:
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Now for a rigid body, the moment center “A” is also a

body point, hence:
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Definition: A moment center satisfying the conditions

stated above is called an Eulerian Moment Center.

Then:
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Equation (8.9) is referred to as the Euler’s Equation.
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Euler’s Equation as a function of coordinate variables :

,     where: (8.10)
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in this form is coordinate dependent.
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