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Purpose:

 To Study Kinetic States and Principles of Rigid 

Bodies.

Topics:

 Kinetic States of a Rigid Body.

 Kinetic Principles of a Rigid Body.

 Rigid Body Rotation about an Invariant Axis.
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Kinetic States of a Rigid Body :

Theorem-23: The Momentum of a rigid body is equal to its

mass times the velocity of the mass center.
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Theorem-24: The Central Moment of Momentum for a rigid

body is equal to its central inertia tensor times the angular

velocity vector.
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Theorem-25: The Moment of Momentum vector about a

general body point “A” in the rigid body can be expressed 

as:
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Equation (8.2) in expanded form is:

(8.3)
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Proof :

Consider the rigid body shown;

: its origin is located at the fixed point “O”. 
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For a rigid body, we have:
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dm xxorrr  Since                                                                      is  a constant

magnitude vector, and the point “A” is a body point, then 

Now, the i-th component of the 2nd term in 

equation (8.5) may be expressed as:
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and from the definition of mass center we have:     

, substituting results;
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However, if point “A” is selected such that 

,Then equation (8.4) reduces to:
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Substituting the result into equation (8.5), we have:
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Example: A thin disk of mass “m” and radius “R” is spinning

about a fixed axis as shown.  Determine the Central Moment of 

Momentum in terms of:

(a). the principal coordinates?  (neglect the disk thickness).

(b). the coordinate with the rotating axis being as one of 

the coordinates? 
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(a). In terms of principal coordinates {xi}:

From symmetry, the coordinate {xi} is established in

the principal directions;
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The angular velocity ω in terms of principal coordinates is:
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, then;
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(b). In terms of coordinates oriented along the rotating axis

{     };  Let us first setup the direction cosines such that:
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Then, using the transform equation (7.25), we can write: 

, and
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Then, the Central Moment of Momentum is: 
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; where , and;

© Sharif University of Technology - CEDRA



By: Professor Ali Meghdari

Observations :

 Although the spin axis is fixed, the moment of momentum has

components along the other axes.

 Even when “ω” is constant, while the moment of momentum

components may be constant in the body coordinate {xi}, the moment of

momentum vector will rotate about the rotation axis at a speed of “ω”.

 The time rate of change of moment of momentum due to the change

in direction is an indication of presence of an exterior moment on the

body.
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Kinetic Principles of a Rigid Body: Consider a rigid body

as shown, where point “A” is a body point, then: 

O (fixed)
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Momentum Principle (P-Principle)

for the Rigid Body is:

Pamf
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In Chapter-6 we showed that for a

system of particles, with the general

moment center “A”, and                     , we have;
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Momentum of Momentum Principle

(H-Principle) for the Rigid Body is:
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Now for a rigid body, the moment center “A” is also a

body point, hence:

 
AAACAACA

IvmrrIvmH )( , and;

(8.8)

© Sharif University of Technology - CEDRA



By: Professor Ali Meghdari

)(

,0

,

int,:""



























AAA

ACCAA

I
dt

d
HM

aandvvorv

orCA

orpofixedaisA



However, if 

Definition: A moment center satisfying the conditions

stated above is called an Eulerian Moment Center.

Then:
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Equation (8.9) is referred to as the Euler’s Equation.
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Euler’s Equation as a function of coordinate variables :

,     where: (8.10)

)(xI A

ij : are components of inertia tensor 
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Example: A Thin Uniform Rod:
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)( SinmI A Therefore;                                     ,    and etc..   Euler’s Equation

in this form is coordinate dependent.
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