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Purpose:

 To Study Inertia Tensor of a Material System.

Topics:

 Inertia Tensor of a Mass Particle.

 Inertia Tensor of a System of Particles.

 Inertia Tensor of a Continuum.

 Transfer Theorem.

 Principal Values of Inertia Tensor. 

INERTIA TENSOR
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From Chapter-6, we defined the Kinetic States as:

 For a Single particle;

Linear Momentum (Momentum): 

(7.1)

Moment of Momentum (Angular Momentum):

kjijk

O
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O
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 ,

, where: “O” is a moment center.

(7.2)
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 For a System of Particles;

Linear Momentum (Momentum):

(7.3)
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Moment of Momentum (Angular Momentum):

(7.4)


rWhere; : position vector of the “βth” particle from

the moment center “O”.
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or, by Theorem-16, for the equivalent mass system, the 

Total/Global Momentum and Global Moment of Momentum

of the system of particles is: 





N

C
vmvmP

1




= (Global Momentum) (7.5)
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CCCO
HHPrHH  (Global M.O.M.) (7.6)

O
HWhere; : (M.O.M. about any point “O” in space).
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Now, let us consider the system of particles shown. 

We wish to define the quantity            (Central M.O.M.).

To do this, suppose that the system is:

- Locked rigidly, so that the distance between any pair of

particles remain constant throughout the dynamic process.

Therefore:  The system’s rotation may be described by a single

angular velocity “ω”.
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x; where          : its origin is at the mass center. 
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: are the velocity properties, and

: plays the role of mass “m” in describing the kinetic

state of a rigid system.

(7.8)
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Definition: The “Inertia Tensor” actually defines the mass 

distribution of a material system.

Consider the particle “m” in 

coordinate system {xi} as

shown;

Inertia Tensor of a Particle of Mass “m” about a fixed

point “O”:

(moment center) O

m
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x1
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r1

r2

r3
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Definition: The moments of inertia of the particle “m” about

the axes {xi} are:
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Definition: The products of inertia of the particle “m” are:
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Inertia Tensor of a System of Particles about a fixed

point “O”:  A physical property of the material system;
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Note: To write the inertia tensor about an arbitrary point “A”

in space, simply do a coordinate shift, as:

(7.11)
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Definition: When the moment center is specifically the

mass center, the inertia tensor is called the Central Inertia

Tensor, “       ”, where:
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: its origin is located at the mass center. 

Where:
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And about any arbitrary moment center like “A” is: 

(7.14)
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Inertia Tensor for a Continuum: A generalization of the

inertia tensor for a system of particles where the finite

sums “ ∑ ” are integrally summed “ ∫ ”. 

Ex:
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Transfer Theorem-(18): When the mass, the mass center,

and the central inertia tensor are known, the inertia tensor

of a mass system about any given moment center can be 

obtained from:

A

eq
I

.
where; : inertia tensor about “A” due to a single particle

of mass “m” at the mass center.
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However, if the origin “O” is selected as the moment center,

then , and Equation (7.15) reduces to:
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Note: Inertia Tensor about an arbitrary point “A”

in space, can be computed by a coordinate shift, as:

(7.11)

Substituting the last equation into the Equation (7.11) and 

simplifying results in:
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I

Principal Values of the Inertia Tensor: In rigid body dynamics, 

it is often convenient to use a coordinate system fixed to the 

rigid body in which the products of inertial are zero.  In this 

case, the inertial tensor “      ” will be a diagonal matrix such

as:

This coordinate system is then called the Principal Coordinate,

and the moments of inertia about the principal axes are called

the Principal Moments of Inertia, and the three planes formed

by the principal axes are called the Principal Planes.
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 A Thin Uniform Disk:

C x1

x2

x3

R
























2

2

2

2

1
00

0
4

1
0

00
4

1

mR

mR

mR

I
C

m

Example:

x1

x2

x3

C

























12
00

0
12

0

000

2

2

ml

ml
I

C

 A Thin Uniform Rod:
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 A Sphere of Radius “R” and Mass “m”:


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100

010

001

5

2 2mRI
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More on the Principal Inertia Tensor: If we examine the 

moment and product of inertia terms for all possible 

orientation of the coordinate axes with respect to a rigid 

body for a given origin, we will find in the general case

one unique orientation “{xα}” for which the products of

inertia are zero.
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II Theorem-19: Given “              ”, there exist three principal 

values of “      ”, namely       (Principal Moments of Inertial) 

which are the eigenvalues of the inertia tensor      , and may

be computed as follows:

therefore;
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and the direction cosines of the principal axes of inertia 

{       } are the corresponding normalized eigenvectors,

defined as follows:
i
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(In the first 3 Equations of (7.22), only 2 are independent, and the 3rd is a 

linear combination of the others.)
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Now, let us consider the Moment of Momentum vector

about the point “O”, such that:
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substituting in equation (7.24) results:
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Therefore:
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Equation (7.25) is known as the Rotation Transformation

of Inertia Properties. (same as Eq. 5.54 in Ginsberg Book) 
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Theorem-20: For a body with a plane of symmetry, any axis

perpendicular to the plane is a principal axis of inertia at the

point of intersection with that plane. (In other words, if two 

coordinate axes form a plane of symmetry for a body, then

all product of inertias involving the coordinate normal to 

that plane are zero).

Theorem-21: For a body having two planes of symmetry, the 

line of intersection is also the principal axis for any moment

center lying on the line.

Theorem-22: If at least two of the three coordinate planes 

are planes of symmetry for a body, then all products of 

inertias are zero.
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For a Matrix  [    ]:A

0 IA  I ij
, (   = Unit Matrix =      )Eigenvalues:

   0 xIA  I ij
, (   = Unit Matrix =      )

Eigenvectors:

(READ EXAMPLES 5.1 and 5.3 of Ginsburg)


