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The Kinetic Principles in the Newtonian Reference 

Frame (NRF) :

The kinetic state of a material system is conserved unless

disturbed by exterior actions.  The Principle of Momentum

(P.M.) and the Principle of Moment of Momentum (P.M.M)

govern the change.

Recall: Newtonian (Inertial) Reference Frame;

Non-accelerating & Irrotational reference frame.

Admissible Newtonian Forces in the NRF shown on a

Free-Body-Diagram are:

- Contact Forces

- Field Forces (i.e. gravitational field, and electromagnetic

field)

- Spring, and Friction Forces
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Momentum Principle (M.P.)  for a System of Particles:



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N

PPF
1

  P; where = (Global Momentum)

Momentum Principle (M.P.) for a Single Particle: The time

rate of change in the momentum of a particle is equal to

the resultant external force acting on the particle.

PFPvm
dt

d
amF   )( (6.20)
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Moment of Momentum Principle (M.M.P.) for a Single Particle:

The time rate of change in moment of momentum of a particle about

a fixed moment center “O” in space isequal to the resultant external

moment (of forces) aboutthe same moment center.
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(fixed point in space, NRF) 
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Remark: The Moment of Momentum Principle can actually 

be expressed more generally for any moment center “A” 

which has a zero velocity in space.

AA
HM  ; A= moment center with zero velocity, but may

be accelerating.
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Proof :

(6.22)
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MHPvorv  ,0

(A is an admissible moment center)

If 
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Moment of Momentum Principle (M.M.P.)  for a System of

Particles: 

 About a fixed point “O”:
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 About a general point “A”:
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)( PvMH
AAA
 (6.23)
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However, if 

(6.24)

C
vmP Since for a constant mass system: 

an admissible moment center for equation (6.24), if and 

only if it satisfies one of the above conditions.

.  Point “A” is
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Linear and Angular Impulse:

 Linear Impulse of a Force “F”:  Let;  F=F(t) and P=mv ,

then:
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 Angular Impulse of a Moment “M”:  Let;  

and , then:

(6.26)
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Note: the “Momentum” and the “Moment of Momentum” 

are conserved if the Impulse Integral Vanishes, that is when:

1.  F = MO =0  (the integrand vanishes).

2.  The integrand is finite, but the time interval is infinitesimal

(Δt = ε ), (i.e. impact problems, and explosions).

3.  The integrand is a cyclic function and the time interval is

one complete period, (i.e. materials under cyclic loading).
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Ex: A simple pendulum constrained to oscillate in a plane

as shown, has a mass “m” and a length “L”.  Derive its

differential equation of motion?
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(a). By the Momentum Principle:

tev 

nt eea 2  

 Motion Analysis:

 Free Body Diagram
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 Kinetics (M.P.):
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D.E.M.

© Sharif University of Technology - CEDRA



By: Professor Ali Meghdari

(b). By the Momentum of Momentum Principle:

tev 
 Motion Analysis:

 Free Body Diagram

 Kinetics (M.M.P.):
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Ex: A horizontal table is spinning at a constant angular 

velocity of “Ω”.  On the table, a spring-retained mass

“m” is oscillating in a straight slot as shown.  The 

spring constant of each spring is “k”.  Determine the  

equation of motion of the mass, if the coefficient of 

friction between the mass and the slot is “μ”.

m

Ω

O
K

x2

x1

x

Horizontal 

Platform

Solution:

 Motion Analysis:

a). Fix KRF {xi} to the table with 

reference point at “O”.

b). KRF Motion; 

0,0,3  OO ave 
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111 ,, exaexvexr  
c). Relative Motion;
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d). Absolute Motion;

 Free Body Diagram
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Coulomb (Dry) Friction: 

f
FxN )sgn(

to oppose the sliding motion.

, a constant force

© Sharif University of Technology - CEDRA



By: Professor Ali Meghdari

01)sgn(1

01)sgn(

01)sgn(







xifx

xifx

xifx







Signum Function:

x

)sgn(x

0

-1

+1

© Sharif University of Technology - CEDRA



By: Professor Ali Meghdari

 Kinetic Analysis

Momentum Principle; amPf  
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(Linearly decaying oscillation due to the dry friction).  Note that 

direction of “N” is arbitrary and does not affect the D.E.M.
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Moment of Momentum Principle (M.M.P.) in terms of a

rotating coordinate (KRF) with angular velocity “Ω”: 
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