Homework Assignment: # 2

- 1. Show that the moment arm $\underline{\mathbf{r}}$ of a force $\underline{\mathbf{f}}$ about a moment center "O" can be directed from "O" to any point on the line of action of $\underline{\mathbf{f}}$.
- 2. Show that the couple arm $\underline{\mathbf{a}}$ can be any vector connecting from one point on the line of action of $-\underline{\mathbf{F}}$ to one on that of $\underline{\mathbf{F}}$.

3. Given the following force systems, solve for the resultant system at the origin "O".

(b): { $f_1=36 \text{ N}, f_2=49 \text{ N}, f_3=52 \text{ N}, f_4=21 \text{ N}$ }

- 4. The vector $\underline{A} = 24\sinh(4t)\underline{e}_1 + 10\sinh(4t)\underline{e}_2 + 26\underline{e}_3$ changes in magnitude and also spins at an angular velocity of $\underline{\omega}_A = \underline{e}_1 + 8\underline{e}_2 + 4\underline{e}_3$ rad/s. Determine the time rate of change of the vector \underline{A} ?
- 5. Check the <u>Dimensional Homogeneity Theorem</u> for the following relation: $\underline{M}^{\circ} = \underline{I}^{\circ} \cdot \underline{\alpha} + \underline{\omega} \times (\underline{I} \cdot \underline{\omega})$, where: \underline{I} : inertia tensor; \underline{M} : moment of force; $\underline{\omega}$: angular velocity; $\underline{\alpha}$: angular acceleration.