ADVANCED DYNAMICS
By: Ali Meghdari

SUMMARY

REVIEW:

Time Derivative of a Vector: For a general vector A = Aea ,

The time derivative in terms of its Cartesian component set {A;}, where; A= A (t)e, (), is:

_A=A§A+C_0AXA

{Jaumann Rate of a Vector}.

_A:Aigi +QxA

PARTICLE KINEMATICS:

Path Variables Description (Intrinsic Coordinates): s = s(t): arc length; rp,0 = I'p/0(S) =Position Vector at time “t”;

Velocity: V,

. . \
= S€, =VE,, €, : (unit vector tangent to the path); Acceleration:d =V€, + —€

2
= atg’[ + angn

en L &, and normal to the path directing toward the center of curvature. For a planar curve or path like “y=f(x), the Radius

of Curvature “p” is computed from:

1
Yo,

d’y
dx?

b

[1+ (gy)z]a/z - [1—|- (Y)2]3/2
X

and,

For a particle traveling on a path or a curve in 3-dimension (X,y,z) coordinate so that its path is described by the position

x dy 291/2
s=| [1+(— dx
[+

= The Arc Length

vector “r’ as a function of the parameter “t within a possible range”, we have: I = X(t)e, + y(t)e, + z(t)e,,

then:

1

()

P (0

where: S=(I-T)

1/2

s= jto[(x)2 +(y)? + (2)?]"%dt = (Arc — Length)

=007 + (9)" + (2)°]"* ano

dr_drdt ¢
' ds dtds s
de, de, dt
e, =p—=p— N () 1
€ =P g it ds () £(F- )]
e, =€, xe, ) I x i = (binormal — unit — vector)
S

Cartesian (Rectangular) Coordinates {xj}: I = X €, + X, €, + X, €, = X, €; = (Position Vector);

=rI= V.€ = X €, = (Particle Velocity); a =V =1 =a,€; = X; €, = (Particle Acceleration).

Matrix of Direction Cosines between coordinate { )_(J. Yand { X}

Iﬁ Iﬁ |1§
T=[¢,1=|L. 1, | |iwhere: £, =€ -& =le,[&|cos(e, &) =cos(x,X)
Isi |3§ |3§

Columns of 'I=' = [Kij ] are the projection of the unit vectors of X; into X;. Rows of 'I=' = [[ij ] are the
projection of the unit vectors of X, into X, . Therefore: {P} =T{P} ~ or {X}=T{X}.

-1 t
When the two origins coincide, I is a Rotation Matrix, and Orthogonal ( I = I ), expressing the relative

orientation of frame { )_(J. } with respect to { X; }.
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Elementary Rotation Matrices: Rotations about one of the coordinate axes.

1 0 0 cosd, 0 sind,
R (x,8,)=|0 cosf, -sing ;R (x,,6,)=| O 1 0 |
0 sing, cosé, —sing, 0 cosé,

cosd, -sing, O
R.(X;,0;,)=|sing, cosd, O
0 0 1

ORTHOGONAL CURVILINEAR COORDINATES:

Cylindrical Coordinates (R, ¢, Z), and {Xr, X, , Xz}: Base Vectors

Position Vector: |F'p0 =R€x +2Z8€,|;  Velocity Vector: |V, = Re€; + R¢7§¢ +Z¢,|;

Acceleration Vector: (@, =(R—R@%)e, + (2R@ + Rp)e, +Ze, =a e, + ae,+ta,e,

Spherical Coordinates (0, @, R), and {Xo, X, , Xr}: Base Vectors

Position Vector: |I'p/o = Re€x|; Velocity Vector: [Ve =F5,0 =Rez + (R@sIn 0@(/7 +R6e,)|

Acceleration Vector:

a, =(R-R¢’sin*@—R&°)e, + (2R@sin @ + 2ROpcosd + RpsinO)e,, +
+ (RO + 2RO —Rg’sin@cosh)e,

Theorem-6: The orientation of a curvilinear coordinate, g% (i.e. R, ¢, Z), at a point “P” in space is defined by the

direction of the Base Vectors, J , at that point. If r(q“)=position vector of “P”, then:

or

Base Vectors = = -——, and unit vectors of J are: €, =

Za aq = ‘g

—_—a

—a

. Note that the curvilinear coordinates are

Orthogonal if the base vectors form an orthogonal set, that is: “ (J e g 5 0fora #= B

RIGID BODY KINEMATICS:

Simple Rotation: Rotation of a rigid body about a general fixed axes in space.

Euler’s Theorem: Any change of orientation (about an arbitrary axis) for a rigid body with a fixed body point can be
accomplished through a simple rotation B . Then, the rigid body rotation can be resolved into three elementary rotations,

where the angles of these rotations are called the Euler’s Angles.

Two situations commonly arise in sequential rotations:
1. Body Fixed Rotations (Rotations about New-axes): For n # of rotations: R=R R_R_...R =(Post-multiply)

2. Space Fixed Rotations (Rotations about Old-axes): for n # of rotations: R =R

R,

|70

, R, =(Pre-muttiply)

A S

Rotation About an Arbitrary Axis (Equivalent Angle-Axis Representation):
Euler’s Theorem(continued): Any change of orientation for a rigid body with a fixed body point can be accomplished
through a General Rotation Operator (a simple rotation) with a proper axis and angle selection, where:

k.,k.véd+co k. k. vo-k_sO k.,k.,vOé+k,so

x1"'x1 x1"*x2 x1"*x3

RCK,0)=|kkvO+k, 50 Kk vO+cO K,k vO—k, SO

X1 *x2 X2 X2

k k. vO—k,sO k,k vo+k,sO k.k ,vO+co

X2 "x3
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"K=k,e, +k,e,+k.e, and k2 +k’ +kZ% =1 adVvO=versd=(1-cosd).

r.11 I’.12 r‘13
For a given Rotation Matrix like B:; B =|r,, [I,, [T, | onecandetermine the equivalent angle-axis by taking
I r I

31

an inverse approach, by setting 522 B(X K, 8), and solving to obtain:

i 1 r.+r, +r.—1
sin@ = J_rE\/(r32 —r,) +(r,—r,)* +(r,, —r,)* and cOSO = 1t 222 2= where:
; o — 1 kxl
,,Sin@ X
O=tan " (—);and K=——|1,—-1, |=|K,
cosé 2sin@
=Ny kx3

This solution is valid for (0{@{180), and for every pair of equivalent angle-axis (" K, @) there exists another pair

X - . . . . . . .
as (— K,—@) representing the same orientation in space with the same rotation matrix. (no solutions for 6=0 and 180).

Any combination of Rotations is always equivalent to a single rotation about some axis “K” by an angle “6”.

For General Infinitesimal Rotations we have:

1 —-AB, A6,
,RR = A0, 1 —A@, |,or Rjk =5,-k —7i,-kA9i
—-AG, AG, 1

Angular Velocity Vector foraR.B.: @ = @, € ; If the angular velocity “ (0  is defined in a set of moving coordinate {z;}

R=RR,R,=

170

having an angular velocity €2, we may apply the Jaumann rate to compute the angular acceleration vector as:

Angular Acceleration Vector for aR.B.: |&X = d)i € + Q X .

Velocity and Acceleration Field in a Rotating (only) Rigid Body: p : A constant magnitude vector fixed in the R.B.
Velocity and Acceleration of a point P in the R.B.: |Vp = E =wxpf a, =a X P +wX (Q X ,L_?) i

General Motion of a Rigid Body (Translation & Rotation):

Chasle’s Theorem: The general motion of a rigid body can be described by a combination of motion of some
convenient reference body point and an Eulerian rotation about that point.

Note: A rigid body in space possesses Six-Degrees-of-Freedom (3-DOF: for the position of the reference point on the
rigid body, and 3-DOF: for the orientation of the rigid body (i.e. Euler’s Angles).

For a Moving Rigid body in Space with some known @ = @, €; ,& = &, €;, and motion of a body point “O”, we

can compute the motion of another body point “P” using: Position Vector: [v,o =V 5,00 + 0 ;

Velocity Vector: |Vp = Vo + @ X P|; Acceleration Vector: [8p =8, + A X 0+ @ X (@ x E) -

KINEMATICS (MOVING) REFERENCE FRAME (KRF/MRF):

If {A}={X; } : Absolute Reference Frame, and {B}= {X;}: Moving (Kinematics/Rigid Body) Reference Frame,
Then motion of a point or particle in these frames may be described by:

Particle’s Absolute Position: oo =rojo trpo

Particle’s Absolute Velocity: Vp =Vo +Vp,0 +QXTp 0

Particle’s Absolute Acceleration: Ap =8g +ap 0 + QX0 +2Q%V 0 + QX (QXTp/0)
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Special Cases :

. . . Ve =Vo +Vp,0
1. If KRF is Translatory/Irrotational Reference Frame (QQ =Q =0), then: _
dp =85 +ap 0
2. If the point P is a Fixed point in the KRF (Vo =8p,0 =0, Q=w,,; =@, (_2 =0z =Q), then:
Vo =Vo +@XxTp0
ap =8y t+axlp o +@x(@XxFp o)
Note that to study the relative motion of a particle P as observed in the KRF, we need the Relative Path: Iy .
Rigid Body Motion (Using KRF):

Theorem-14: The Angular Velocity of a rigid body “ @ ” is the vector sum of the angular velocity of the KRF “ f_2 ”

and the relative angular velocity of the rigid body in the KRF “ @ >, that is: 0 = §_2 + é

Theorem-15: The Angular Acceleration of a rigid body “ ¢ ” is related to the coordinate angular acceleration® §_2 )

the relative angular acceleration & , as well as the angular velocity properties, thatis: |& = Q+a+Qxa

NEWTONIAN MECHANICS: Newtonian reference Frame (NRF): Non-accelerating & Irrotational Ref. Frame.

Momentum “P”-Principle:

A Single Particle: F=ma=P, where:P=mv

N N N
A System of Particles:  |F =Y P’ =P, where:P=>P” ="m”v” (Global — Momentum)
= =1 =1

C

A Rigid Body: F=ma® =P, where:P=mv

Moment-of-Momentum “H”-Principle:

A Single Particle:MA :ﬂA, If \_/A =0,0r \_’A| |E; 6|se:MA =H" +v" x P|Where: HA =pxP

A System of Particles:

. . N
M*=H", Ifv"=00r A=C,or v |P; else:M*=H" +v"xP where]H " =" p” xP”
B
A Rigid Body: (Euler’s Equation):
MA:ﬂA:%(lA.Q), If: (A is fixed), or (A=C), or (v" =0 or v*||P,andp°|[a")

Generalized Forms of the Euler’s Equation:

In terms of a rotating coordinate {x;} having an angular velocity (2 ;

M”*=H"u, +QxH" where:H = |0,

If {x;} is fixed to the body (Body Coordinate), then {2 — @, and {l if\}will form a constant set, and;

A A A A_ (A A
M"=1"a+wx(1 @) orM{ = lja; +yo;l 0,

In terms of principal coordinates at the mass center, or a fixed point A in arigid body that is in pure rotation:

A_ 1A A A

M =1l — (1 = 15)w,0,
A A A A

MJ =la,— (I3 = 1),

A A A A
M =la, (1] - 1,)o0,
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Inertia Tensor of a System of Particles about a fixed point “O”:

N BGEEEELE
Iif:Zmﬁ[xfxféij—xfxf];or IiJ.O:Zmﬁ — xx” (X2)? + (x)? — X/x?
p=1 p=1
- xyx! - Xy X; (x[)? +(x7)?

Rotation Transformation of Inertia Properties:

C1=[TINCIT' ], where: {€,}=T{e,}, or  {e3}=T'{e,}

NON-NEWTONIAN REFERENCE FRAME (NNRF): Admissible forces are Newtonian Forces “F” & Non-
Newtonian Coordinate Forces.

Momentum “P”-Principle:

A Single Particle: E
A System of Particles & Rigid Body:

%(E)=m§=E—m§o—mQXE—ZmQX\Z—mQX(QXE)

I
[

%(E)=mac — F —ma, - mQxFC - 2mQx7° - mQx (QxFC)

Moment-of-Momentum “H”-Principle:

0 o r
A Single Particle: M"=H?u,,or M’ =H?| Where: “O”is a fixed point in NNRF, and {u} is
fixed to the NNRF.

A System of Particles & Ri_id Body:

M =H’uy,,or I\Wio = ﬁio Where: MO ={Global Moment of Forces}, and

N
H° =S xm, v’ ={Global Moment of Momentum}
ALY L p Y

Individual Force Set = Global Forces & Couples Force Action
{-m,a.} {-ma } They
{-m,Qxr’} {~mQxr°,and §:_|=‘C O} all act
{—mﬂg_zx(gxfﬂ)} £mox(@Qxr°), C° :_Qx(ic Q) at the

{—Zmﬂf_lx\zﬂ} {-2maxv®, C”= _I_TC _Q_QXHC} mass center.

ENERGY PRINCIPLES:
Kinetic Energy;

1 1 .
A Single Particle: T= > mv.y = 5 mx, X |,

13 1
A System of Particles: [T ==Y m, v’ v’|, A Continuum: |T =—=|v.vdm
2447 2
= m
T s
Total K.E. for a Constant Mass System: [T =T® +T0 = Em\_/ v +§Zmﬁ£ﬂ _ﬂ
B
i 1 c . C 1 C l C 1 C
Total K.E. for a Continuum (Rigid Body): [T =T +T® =Em\_/ v +§6_0L Q. = E\_/ -E+§Qﬂ

i l c .2 cC _.2 cC .2
In terms of Principal Coordinates at “C”: TO = E(Il o +1;0; +1503)
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Work/Power: A Single Particle: |U = J.i-d[ , Differential Expression: [dU = f.dr|, power: U =fv

T

A System of Particles:

N N
U=UD41U® or U=UD4+U0@ =NV {04+ {©
;— 5 ;— 5

,or:

= Constraint Functions,

A Rigid Body with a Body Point “A™: [U =U®@  or U =U® =v*.{® +pM"
Virtual Work:
& A A
For Individual Path of Particles: | OU ZZiﬂ-éfﬂ . ForaRigid Body: [0U =f _.6r"+M".50
p=1
LEIBNIZPRINCIPLE: [U=AT, dU=dT, U=T, U=6T
LAGRANGIAN EQUATIONS OF MOTION:
d or oT
For Independent Set of Generalized Coordinates {q™ } : a(aqm)— " =Q,; m=12..N
g( oL )— oL =Quems M=12..,N;where: L=T-V
dt oq™" oq" ‘
For Dependent Set of Generalized Coordinates {q"}: g,(")=0 r=1..R; m=1..N
agr (0] agr r
md = = Constraint Coefficients, |C, =——], = R-number of Lagrangian Multipliers = # of Constraints,
{C}qu Constraint Coefficients, |C ot {1}=R ber of L ian Multipli # of Constraint
i( 8T )— dl +A'C,, =Q,; Gives: N —Equations
dt 'aq™" oq"
9,(g")=0 or C,q"+C°=0 Gives: R-Eqguations
{q", A }=N+R Unknowns

GENERAL FORM OF HAMILTON’s PRINCIPLE:

[F(ou +oT)dt=0
5[(t0) = 5[(1:1) :Q




