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REVIEW: 

Time Derivative of a Vector: For a general vector A = AeA , AeAA AA  
 {Jaumann Rate of a Vector}. 

The time derivative in terms of its Cartesian component set {Ai}, where; )()( tetAA ii , is: AeAA ii  
 

              

PARTICLE KINEMATICS: 

 

Path Variables Description (Intrinsic Coordinates):  s = s(t): arc length; rP/O = rP/O(s) =Position Vector at time “t”; 

Velocity: tttP eevesv ;  : (unit vector tangent to the path); Acceleration: nnttnt eaeae
v

eva 
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en ┴  et , and normal to the path directing toward the center of curvature. For a planar curve or path like “y=f(x), the Radius 

of Curvature “ρ” is computed from:  
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For a particle traveling on a path or a curve in 3-dimension (x,y,z) coordinate so that its path is described by the position 

vector “r” as a function of the parameter “t within a possible range”, we have: 321 )()()( etzetyetxr  , 

then: 
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Cartesian (Rectangular) Coordinates {xi}: ii
exexexexr  332211

 = (Position Vector);          

iiii
exevrv    = (Particle Velocity); iiii exearva    = (Particle Acceleration). 

       

Matrix of Direction Cosines between coordinate {
j

x } and {
i

x }: 
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Columns of T [
ij

 ] are the projection of the unit vectors of 
j

x  into 
i

x . Rows of T [
ij

 ] are the 

projection of the unit vectors of 
i

x  into 
j

x . Therefore: }{}{}{}{ xTxorPTP
xx

 . 

When the two origins coincide, T  is a Rotation Matrix, and Orthogonal ( 
t

TT 
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 ), expressing the relative 

orientation of frame {
j

x } with respect to {
i

x }.  

 

)(
)(

)]()([
)(

3

2

4

vectorunitbinormalrr
s

eee

rrrsr
sds

dt

dt

ed

ds

ed
e

s

r

ds

dt

dt

rd

ds

rd
e

ntb

tt

n

t






















 



ADVANCED DYNAMICS                                      SUMMARY 

By: Ali Meghdari     

Elementary Rotation Matrices: Rotations about one of the coordinate axes. 
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ORTHOGONAL CURVILINEAR COORDINATES: 

 
Cylindrical Coordinates (R, φ, Z), and {xR, xφ , xZ}: Base Vectors 

Position Vector:     ZROP eZeRr /  ;      Velocity Vector:    ZRP eZeReRv     ;  

Acceleration Vector:   ZZRRZRP eaeaeaeZeRReRRa    )2()( 2
 

Spherical Coordinates (θ, φ, R), and {xθ, xφ , xR}: Base Vectors 

Position Vector:    ROP eRr /  ;    Velocity Vector:    )sin(/   eReReRrv ROPP
   ;  

 

Acceleration Vector: 
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Theorem-6: The orientation of a curvilinear coordinate, qα
, (i.e. R, φ, Z), at a point “P” in space is defined by the 

direction of the Base Vectors, 


g , at that point.  If )( qr =position vector of “P”, then:  

Base Vectors =
 q

r
g




 , and unit vectors of 


g are: 






g

g
e  .  Note that the curvilinear coordinates are 

Orthogonal if the base vectors form an orthogonal set, that is: “


g .


g   = 0 for α   β ”. 

 

 

RIGID BODY KINEMATICS: 

 

Simple Rotation: Rotation of a rigid body about a general fixed axes in space. 

 

Euler’s Theorem: Any change of orientation (about an arbitrary axis) for a rigid body with a fixed body point can be 

accomplished through a simple rotation R .  Then, the rigid body rotation can be resolved into three elementary rotations, 

where the angles of these rotations are called the Euler’s Angles. 

 

Two situations commonly arise in sequential rotations: 

1. Body Fixed Rotations (Rotations about New-axes): For n # of rotations: 
n

RRRRR ...
321

 =(Post-multiply) 

 

2. Space Fixed Rotations (Rotations about Old-axes): for n # of rotations: 
123

... RRRRR
n

 =(Pre-multiply)   

 

Rotation About an Arbitrary Axis (Equivalent Angle-Axis Representation): 

Euler’s Theorem(continued): Any change of orientation for a rigid body with a fixed body point can be accomplished 

through a General Rotation Operator (a simple rotation) with a proper axis and angle selection, where: 
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For a given Rotation Matrix like



















333231

232221

131211

rrr

rrr

rrr

RR
x


, one can determine the equivalent angle-axis by taking 

an inverse approach, by setting ),( 
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 , and solving to obtain: 
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This solution is valid for ( 1800  ), and for every pair of equivalent angle-axis ),( K
x

, there exists another pair 

as ),(  K
x

 representing the same orientation in space with the same rotation matrix. (no solutions for θ=0 and 180).     

   

Any combination of Rotations is always equivalent to a single rotation about some axis “K” by an angle “θ”. 
 

For General Infinitesimal Rotations we have: 
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Angular Velocity Vector for a R.B.: ii
e  ; If the angular velocity “ ” is defined in a set of moving coordinate {zi} 

having an angular velocity “ ”, we may apply the Jaumann rate to compute the angular acceleration vector as: 

Angular Acceleration Vector for a R.B.:   ii
e . 

 

Velocity and Acceleration Field in a Rotating (only) Rigid Body: ρ : A constant magnitude vector  fixed in the R.B. 

Velocity and Acceleration of a point P in the R.B.:    
Pv ;     )(  Pa . 

 

General Motion of a Rigid Body (Translation & Rotation): 
Chasle’s Theorem: The general motion of a rigid body can be described by a combination of motion of some 

convenient reference body point and an Eulerian rotation about that point. 
Note: A rigid body in space possesses Six-Degrees-of-Freedom (3-DOF: for the position of the reference point on the 

rigid body, and 3-DOF: for the orientation of the rigid body (i.e. Euler’s Angles). 

 

For a Moving Rigid body in Space with some known ii
e   , ii

e  , and motion of a body point “O”, we 

can compute the motion of another body point “P” using: Position Vector:   OOOP rr //  ; 

Velocity Vector:   OP vv  ;  Acceleration Vector:  )(   OP aa . 

 

 

KINEMATICS (MOVING) REFERENCE FRAME (KRF/MRF):  
 

If {A}= }{ ix : Absolute Reference Frame, and {B}= }{ jx : Moving (Kinematics/Rigid Body) Reference Frame, 

Then motion of a point or particle in these frames may be described by: 

Particle’s Absolute Position:  '//'/ OPOOOP rrr   

Particle’s Absolute Velocity:  '/'/' OPOPOP rvvv   

Particle’s Absolute Acceleration:  )(2 '/'/'/'/' OPOPOPOPOP rvraaa  
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Special Cases : 

1.  If KRF is Translatory/Irrotational Reference Frame )0(   , then: 
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2.  If the point P is a Fixed point in the KRF ),,0( ....'/'/   BRBROPOP av  , then: 

'/' OPOP rvv    

)( '/'/' OPOPOP rraa    

Note that to study the relative motion of a particle P as observed in the KRF, we need the Relative Path: Γrel. . 

Rigid Body Motion (Using KRF): 

Theorem-14: The Angular Velocity of a rigid body “ ” is the vector sum of the angular velocity of the KRF “ ” 

and the relative angular velocity of the rigid body in the KRF “ ”, that is:                . 

Theorem-15: The Angular Acceleration of a rigid body “ ” is related to the coordinate angular acceleration“ ”, 

the relative angular acceleration  , as well as the angular velocity properties, that is:          . 

 

 

NEWTONIAN MECHANICS: Newtonian reference Frame (NRF): Non-accelerating & Irrotational Ref. Frame. 

 

Momentum “P”-Principle: 

A Single Particle:  vmPwherePamF  :,  

A System of Particles:       )(:,
111

MomentumGlobalvmPPwherePPF
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A Rigid Body:  
CC

vmPwherePamF  :,  

 

Moment-of-Momentum “H”-Principle: 

A Single Particle: PvHMelsePvorvIfHM
AAAAAAA
  :;,0,  Where: PH

A
   

 

A System of Particles: 

PvHMelsePvorCAorvIfHM
AAAAAAA
  :;,,0, where:
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A Rigid Body:   (Euler’s Equation): 
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Generalized Forms of the Euler’s Equation: 

 

In terms of a rotating coordinate {xi} having an angular velocity ; 
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If {xi} is fixed to the body (Body Coordinate), then  , and }{ A

ijI will form a constant set, and; 

s

A

ksjijkj

A

ij

A

i

AAA
IIMorIIM   ).(.  

 

In terms of principal coordinates at the mass center, or a fixed point A in a rigid body that is in pure rotation: 
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Inertia Tensor of a System of Particles about a fixed point “O”:  





N

jiijkk

O

ij
xxxxmI

1

][





 ; or 


























N

O

ij

xxxxxx

xxxxxx

xxxxxx

mI
1

2

2

2

12313

32

2

1

2

312

3121

2

3

2

2

)()(

)()(

)()(








  

 

Rotation Transformation of Inertia Properties:  
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NON-NEWTONIAN REFERENCE FRAME (NNRF): Admissible forces are Newtonian Forces “F” & Non-

Newtonian Coordinate Forces. 

 

Momentum “P”-Principle: 

A Single Particle:  )(2)( rmvmrmamFamP
dt

d
F o    

A System of Particles & Rigid Body: 
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Moment-of-Momentum “H”-Principle:  

A Single Particle:  
o

i

o
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o
HMoruHM   ,   Where:   “O” is a fixed point in NNRF, and {ui} is 

fixed to the NNRF. 

A System of Particles & Rigid Body: 
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ENERGY PRINCIPLES:   

Kinetic Energy;    

 A Single Particle:         ii xxmvvmT 
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A System of Particles:    
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  ,  A Continuum:   
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Total K.E. for a Constant Mass System:    
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Total K.E. for a Continuum (Rigid Body): 
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 In terms of Principal Coordinates at “C”: )(
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Work/Power:        A Single Particle:  


 rdfU .  , Differential Expression: rdfdU .  , Power: vfU .
 

A System of Particles:    
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A Rigid Body with a Body Point “A”: 
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Virtual Work: 

For Individual Path of Particles: 
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  ,      For a Rigid Body:    ..
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LEIBNIZ PRINCIPLE:     TUTUdTdUTU   ,,,   

 

LAGRANGIAN EQUATIONS OF MOTION: 

For Independent Set of Generalized Coordinates }{ mq :  NmQ
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For Dependent Set of Generalized Coordinates }{ mq : NmRrqg m

r ,...1;,...10)(  = Constraint Functions,  
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  , }{ r = R-number of Lagrangian Multipliers = # of Constraints, 
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GENERAL FORM OF HAMILTON’s PRINCIPLE:  
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