Two Phase Flows
(Section 3)
The Basic Model

By: Prof. M. H. Saidi

Center of Excellence in Energy Conversion
School of Mechanical Engineering
Sharif University of Technology
Homework set#1

Problems 1, 2, 3, 4; Chapter 1, Collier and Thome.

Due to next Tuesday (Mehr, 14th)
Time Averaging

\[\overline{B} = \frac{1}{T} \int_{0}^{T} B \, dt \]
Volume Averaging

\[\hat{B} = \frac{1}{V} \int_{V} B \, dV \]

\[\{B\} = \frac{1}{V_c} \int_{V_c} B \, dV \]

Relation between phase and volume averaging for continues phase

\[\{B\} = \alpha_c \hat{B} \]

Multiphase Flow Research Group
School of Mechanical Engineering

The Basic Model
Principal Equation of Two Phase Flow

1. One dimensional flow
2. Steady state
3. Constant physical properties
4. Existence of Thermodynamic equilibrium
Conservation of Mass

\[
\frac{\partial}{\partial t} (A \alpha_k \rho_k) + \frac{\partial}{\partial Z} (A \alpha_k \rho_k u_k) = \Gamma_k
\]

Continuity equation of phase k

\[
\sum_k \Gamma_k = 0
\]

For steady state flow

\[
\frac{\partial}{\partial t} (A \alpha_k \rho_k) = 0
\]

For gas (g)- liquid (f) two phase flow

\[
\frac{d}{dz} (A_g \rho_g u_g) = \Gamma_g
\]

\[
\frac{d}{dz} (A_f \rho_f u_f) = \Gamma_f
\]

\[
\Gamma_g = -\Gamma_f = \frac{dW_g}{dz} = -\frac{dW_f}{dz}
\]

Void fraction of phase k

Density of phase k

Mass Generation rate per unit length for phase k

\(\alpha_k\)

\(\rho_k\)

\(\Gamma_k\)
Conservation of Momentum

\[
\frac{\partial}{\partial t} (W_k \delta z) + (W_k u_k + \delta z \frac{\partial}{\partial z} (W_k u_k)) - W_k u_k = \frac{\partial}{\partial t} (W_k \delta z) + \delta z \frac{\partial}{\partial z} (W_k u_k)
\]

- **Rate of creation of momentum of phase k**
- **Rate of inflow of momentum within the control volume**

\[
A \alpha_k p - \left(A \alpha_k p + \delta z \frac{\partial}{\partial z} (A \alpha_k p) \right) - \left\{ p \left(-\delta z \frac{\partial}{\partial z} (A \alpha_k) \right) \right\} - A \alpha_k \rho_k \delta z g \sin \theta - \tau_{kw} \rho_k \delta z g \sin \theta - \tau_{kw} P_{kw} \delta z + \sum_{i=1}^{n} \tau_{kz} P_{kn} \delta z + u_k \Gamma_k
\]

- **Gravity**
- **Wall shear**
- **Interfacial shear**
- **Rate of momentum generation**

The Basic Model
Conservation of Momentum

\[\sum \text{Force} = \text{creation of momentum} + \text{inflow of momentum within the control volume} \]

\[-A \alpha_k \frac{dp}{dz} \delta z - \tau_{kw} P_{kw} \delta z + \sum_{1}^{n} \tau_{knz} P_{kn} \delta z - A \alpha_k \rho_k \delta z \ g \ \sin \theta + u_k \Gamma_k \]

\[= \frac{\partial}{\partial t} (W_k \delta z) + \delta z \frac{\partial}{\partial z} (W_k u_k) \]

Steady gas-liquid two phase flow

\[-A_g dp - \tau_{gw} P_{gw} dz + \tau_{gf} P_{gf} dz - A_g \rho_g dz \ g \ \sin \theta + u_g \Gamma_g = W_g du_g \quad \text{I} \]

\[-A_f dp - \tau_{fw} P_{fw} dz + \tau_{fg} P_{fg} dz - A_f \rho_f dz \ g \ \sin \theta + u_f \Gamma_f = W_f du_f \quad \text{II} \]

Momentum conservation at interface

\[\tau_{gf} P_{gf} dz + u_g \Gamma_g = \tau_{fg} P_{fg} dz + u_f \Gamma_f \quad \text{III} \]

Multiphase Flow Research Group
School of Mechanical Engineering

The Basic Model
Conservation of Momentum

Summation of Equations I, II, & III

\[-A \frac{dp}{dz} - \tau_{gw} P_{gw} \, dz - \tau_{fw} P_{fw} \, dz - g \sin \theta (\rho_f + A \rho_g) = d (W_g u_g + W_f u_f)\]

Friction force for each phase

\[
\begin{align*}
(dF_g + S) &= -\tau_{gw} P_{gw} \, dz - \tau_{gf} P_{gf} \, dz = -A_g \left(\frac{dp}{dz} \right) g \, F \, dz \\
(dF_f - S) &= -\tau_{fw} P_{fw} \, dz + \tau_{gf} P_{gf} \, dz = -A_f \left(\frac{dp}{dz} \right) f \, F \, dz \\
(dF_g + dF_f) &= -\tau_{gw} P_{gw} \, dz - \tau_{fw} P_{fw} \, dz = -A \left(\frac{dp}{dz} \right) F \, dz
\end{align*}
\]

Part of total pressure gradient which is need for prevalence of friction
Conservation of Momentum

substitution equation ** in * yields

\[
\frac{dP}{dz} = \frac{dP}{dz} F + \frac{dP}{dz} a + \frac{dP}{dz} z
\]

\[
-\left(\frac{dP}{dz} a\right) = \frac{1}{A} \frac{d}{dz} \left(W_g u_g + W_f u_f\right) = G^2 \frac{d}{dz} \left[\frac{x^2 \nu_g + (1-x)^2 \nu_f}{\alpha (1-\alpha)}\right]
\]

\[
-\left(\frac{dP}{dz} z\right) = g \sin \theta \left[\frac{A_g}{A} \rho_g + \frac{A_f}{A} \rho_f\right] = g \sin \theta \left[\alpha \rho_g + (1-\alpha) \rho_f\right]
\]

Total pressure lost
Energy Conservation

\[\frac{\partial}{\partial t} \left[\alpha_k \rho_k (\varepsilon_k + \frac{u_k^2}{2}) A \delta z \right] + W_k (\varepsilon_k + \frac{u_k^2}{2}) \delta z - [W_k (\varepsilon_k + \frac{u_k^2}{2}) - \delta z \frac{\partial}{\partial z} W_k (\varepsilon_k + \frac{u_k^2}{2})] \]

- **rate of increase of total energy in the C.V**
- **rate of entrance of energy within the control volume**

Internal energy per unit mass

\[\varepsilon_k \]

Rate of heat entrance to C.V of phase k

\[\phi_{kw} P_{kw} \delta z + \sum_{1}^{n} \phi_{kn} P_{kn} \delta z + \phi_k A \alpha_k \delta z \]

Heat flow from channel wall

H.V. via the various interfaces

Internal heat generation within C.V

Multiphase Flow Research Group

School of Mechanical Engineering

The Basic Model
Energy Conservation

The work done by pressure forces

\[
\left[\frac{W_k p}{\rho_k} - \left(\frac{W_k p}{\rho_k} + \left(\delta z \frac{\partial}{\partial z} \left(\frac{W_k p}{\rho_k} \right) \right) \right) \right] - W_k g \sin \theta \delta z - pA \frac{\partial \alpha_k}{\partial t}
\]

Work done by expansion of phase k

The work done by body force

Work done by pressure and shear forces at the interface with the other phases

\[
+ \Gamma_k \frac{\delta z p}{\rho_k} + u_k \sum_{1}^{n} \tau_{kn} P_{kn} \delta z
\]

Mass generation rate per unit length

\[
\Gamma_k \delta z \left(\varepsilon_k + \frac{u_k^2}{2} \right)
\]

The Basic Model

Multiphase Flow Research Group

School of Mechanical Engineering
Energy Conservation

\[
\frac{\partial}{\partial t} A \alpha_k \rho_k (\varepsilon_k + \frac{u_k^2}{2}) + \frac{\partial}{\partial z} W_k (i_k + \frac{u_k^2}{2}) = -W_k g \sin\theta + \phi_{wk} P_{wk} \\
+ \sum_{1}^{n} \phi_{kn} P_{kn} + \phi_k A \alpha_k - pA \frac{\partial \alpha_k}{\partial t} + \Gamma_k (i_k + \frac{u_k^2}{2}) + u_k \sum_{1}^{n} \tau_{kn} P_{kn}
\]

\[
i_k = u_k + \frac{p}{\rho_k}
\]

For steady gas-liquid two-phase flow in channel with constant area

\[
d \left[W_g (i_g + \frac{u_g^2}{2}) \right] + W_g g \sin\theta \delta z = \\
\phi_{wg} P_{wg} \delta z + \phi_{gf} P_{gf} \delta z + u_g \tau_{gf} P_{gf} \delta z + \Gamma_g \delta z (i_g + \frac{u_g^2}{2})
\]

\[
d \left[W_f (i_f + \frac{u_f^2}{2}) \right] + W_f g \sin\theta \delta z = \\
\phi_{wf} P_{wf} \delta z + \phi_{fg} P_{fg} \delta z + u_f \tau_{fg} P_{fg} \delta z + \Gamma_f \delta z (i_f + \frac{u_f^2}{2})
\]

\[†\]
Energy conservation at interface

\[\phi_{gf} P_{gf} + u_g \tau_{gf} P_{gf} \delta z + \Gamma_g (i_g + \frac{u_g^2}{2}) = \phi_{wf} P_{wf} \delta z + \phi_{fg} P_{fg} \delta z + u_f \tau_{fg} P_{fg} \delta z + \Gamma_f \delta z (i_f + \frac{u_f^2}{2}) \]

with regard the equations †, ‡ and ⁴

\[\frac{d}{dz} \left[W_g i_g + W_f i_f \right] + \frac{d}{dz} \left[\frac{W_g u_g^2}{2} + \frac{W_f u_f^2}{2} \right] + (W_g + W_f) g \sin \theta = Q_{wl} \]

Heat transfer to the fluid across the channel wall per unit length

\[Q_{wl} = \phi_{wf} P_{wf} + \phi_{wg} P_{wg} \]

Multiphase Flow Research Group

School of Mechanical Engineering

The Basic Model
Energy Conservation

\[\frac{dp}{dz} [xv_g + (1-x)v_f] = \frac{dE}{dz} - \frac{Q_{wf}}{W} \]

\[+ \left\{ p \frac{d}{dz} [xv_g + (1-x)v_f] + \frac{G^2}{2} \frac{d}{dz} \left[\frac{x^3v_g^2}{\alpha^2} + \frac{(1-x)^3v_f^2}{(1-\alpha)^2} \right] \right\} + g \sin\theta \]

Total pressure gradient

Frictional dissipation

Acceleration head term

Static head term

Internal energy per unit mass

\[E = x \varepsilon_g + (1-x)\varepsilon_f \]

Multiphase Flow Research Group

School of Mechanical Engineering

The Basic Model
Use of the momentum or energy equation to evaluate the pressure gradient

Using momentum equation

Using void fraction to calculate acceleration term from

\[-\left(\frac{dP}{dz}\right) a = \frac{1}{A} \frac{d}{dz} (W_g u_g + W_f u_f) = G^2 \frac{d}{dz} \left[\frac{x^2 v_g}{\alpha} + \frac{(1-x)^2 v_f}{(1-\alpha)} \right] \]

or static head term from

\[-\left(\frac{dP}{dz}\right) z = g \sin\theta \left[\frac{A_g}{A} \rho_g + \frac{A_f}{A} \rho_f \right] = g \sin\theta \left[\alpha \rho_g + (1-\alpha) \rho_f \right] \]

Then calculating friction pressure term from correlation equation in terms of independent variables.

Multiphase Flow Research Group

School of Mechanical Engineering
Use of the momentum or energy equation to evaluate the pressure gradient

Using energy equation

• Calculation of pressure lost arising from variation of potential energy
• Calculation of pressure lost arising from variation of kinetic energy
• Calculate the friction pressure term from independent variables

Note: in two methods we need to the void fraction but the degree of importance in each method is not the same.