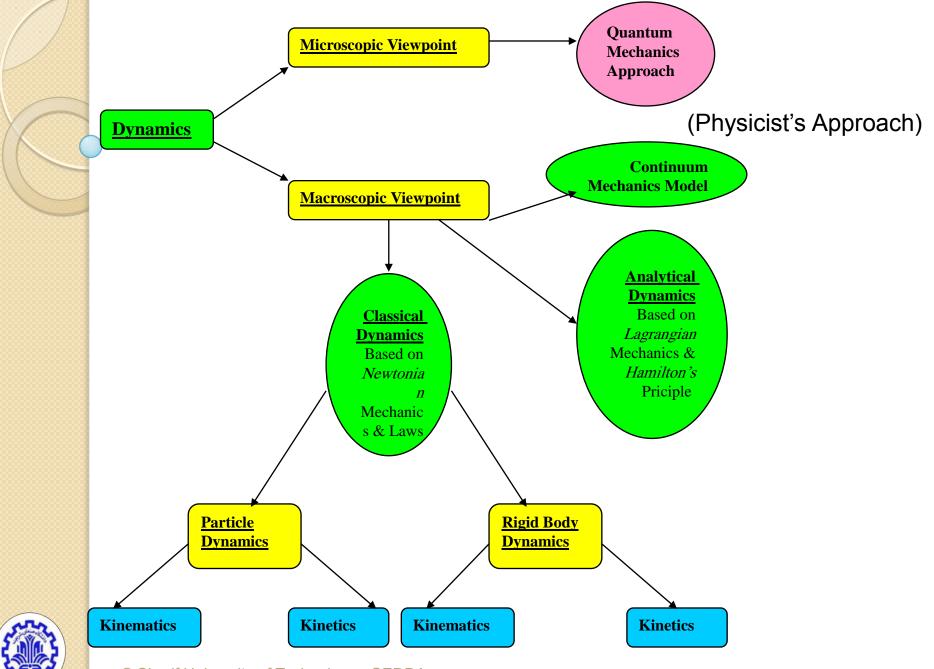


BASIC CONCEPTS

A Quick Review of Undergraduate Dynamics

<u>Mechanics</u>: is one of the oldest and basic branches of Physics. Mechanics deals with the related ideas of Force, Energy, Inertia, and Motion.

Dynamics: is that branch of mechanics that is concerned with the forces acting on an object and its motion produced by the force system (i.e., is the relationship between forces acting on a system and the motion of that system.



Kinematics: is only concerned with the geometry of motion and deals with relationships among displacement, velocity, acceleration, and time without regard to forces causing the motion.

Knietics: is concerned with the force analysis of bodies in motion (force, mass, and acceleration).

SOME BASIC DEFINITIONS

Particle: is a small portion of matter that its dimensions are negligible in the analysis of a physical problem.

Rigid Body: is an aggregate of particles, of which the distance between any pair remains constant throughout the dynamic process.

Deformable Body: is an aggregate of particles, of which the distance between any pair **may change** throughout the dynamic process.

Position: of a particle at a given time is the point of space occupied by the particle at that time.

Body Point: is a point fixed in the rigid body or on its imaginary extension throughout the motion.

Reference Frame: is a frame in which the kinematical and kinetic properties of a system can be defined, (i.e., *Newtonian* Reference Frame).

Note: Do not confuse Reference Frames with Coordinate Systems (i.e. Cartesian, Cylindrical). Many coordinate systems can be embedded in a given reference frame. (any rigid body may be regarded as a reference frame).

NEWTONIAN MECHANICS: In utilizing the Newton's laws of motion, we must define and consider;

Newtonian Reference Frame "NRF" (Inertial Reference Frame, or Galilean Reference Frame): is defined as a reference frame (coordinate) that does not rotate and whose origin is either fixed in space or if it translates, then it moves in a straight line at a constant velocity. In other words: it is a Non-Accelerating and Irrotational reference frame.

The earth, which is often used as a reference frame, is rotating about its own axis and this axis, in turn, is revolving about the sun. The solar system, consisting of the sun and its planets, is a small part of the vast *Milky Way galaxy* which is revolving in space. Note that: *NRF* does not consider the motion of the *solar system* "sun & its planets" within the Milky Way galaxy or the motion of this galaxy within the universe.

Newtonian Laws:

Law (law of Inertia): A particle will remain at rest or moves with constant speed along a straight line, unless it is acted upon by a resultant force.

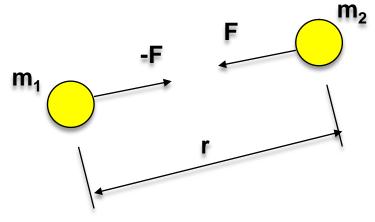
(2.1)

3rd Law (Law of Mutual Interaction): For every force acting on a particle, the particle exerts an equal, opposite, and collinear reactive force.

Force of Attraction =
$$F = (Gm_1m_2)/r^2$$
 (2.2)

 \mathbf{r} = Distance between two particles

 $G = Universal \ Gravitation \ Constant = 6.673 \times 10^{-11} \ m^3/kg.s^2$ (from exp. Data)



Then, *Force of Attraction* between **earth** with mass **M** and a body of mass **m** is:

$$\mathbf{F} = (\mathbf{GMm})/\mathbf{r}^2 \tag{2.3}$$

Where; $M = 5.976 \times 10^{24} \text{ kg}$, and $r = r_e = 6371 \text{ km}$.

Therefore, <u>Weight (gravitational attraction)</u> of a body near the earth's surface during a free-fall in vacuum is:

$$W = m (GM/r^2) = mg$$
 (2.4)

$$g = GM/r^2 = gravitational acceleration = 9.807 m/s^2 = 32.17 ft/s^2$$
 (2.5)

Force: A force is best described by the way that a person feels, sensually or otherwise.

KINEMATICAL QUANTITIES:

Position Vector: a vector describing the position of a point or particle at a time "t" in a coordinate system.

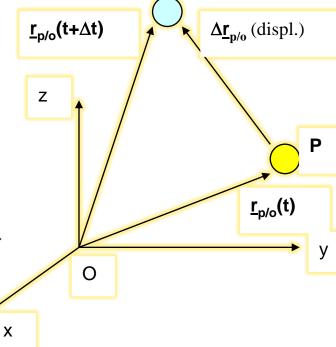
$$\underline{\mathbf{r}_{\mathsf{p/o}}}(\mathsf{t}) = \underline{Position\ Vector}: \{1^{\mathrm{st}}\ \text{kinematical quantity}\}\$$

Velocity Vector:

$$\underline{\mathbf{V}_{\mathbf{p}}} = \lim_{\Delta t \to 0} \frac{\Delta \underline{r}_{p/o}}{\Delta t} = \lim \frac{\underline{r}_{p/o}(t + \Delta t) - \underline{r}_{p/o}(t)}{\Delta t}$$

$$\underline{\mathbf{V}}_{\mathbf{p}} = \frac{d\underline{r}_{p/o}}{dt} = \dot{\underline{r}}_{p/o} \qquad (2.6)$$
{2nd kinematical quantity}

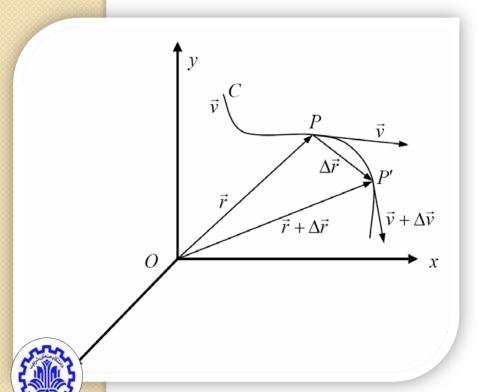
$$V_p = |\underline{v}_P| = \underline{Speed}$$

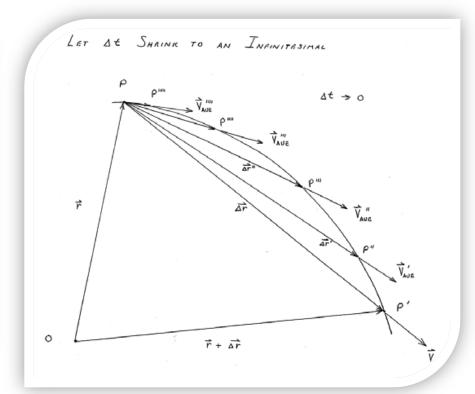


KINEMATICAL QUANTITIES:

Position Vector: $\mathbf{r}_{\text{p/o}}(t)$

Velocity Vector:
$$\underline{\mathbf{V}}_{p} = \lim_{\Delta t \to 0} \frac{\Delta \underline{r}_{p/o}}{\Delta t} = \lim \frac{\underline{r}_{p/o}(t + \Delta t) - \underline{r}_{p/o}(t)}{\Delta t}$$

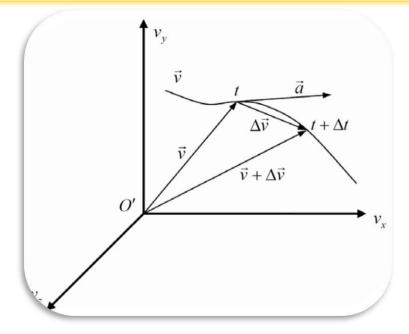




Acceleration Vector:

$$\underline{\mathbf{a}_{p}} = \frac{d\underline{v}_{p}}{dt} = \underline{\dot{v}}_{p} = \underline{\ddot{r}}_{p/o}$$
 {3rd kinematical quantity}

(2.7)



Jerk Vector: (*sudden movement*) is the rate of change of acceleration. It is occasionally considered.

$$\underline{\mathbf{J}_{\mathbf{p}}} \stackrel{\underline{d}\underline{a}_{p}}{\underline{d}t} = \underline{\dot{a}}_{p} = \underline{\ddot{v}}_{p} = \underline{\ddot{r}}_{p/o} \quad \{4^{\text{th kinematical quantity}}\} \quad (2.8)$$

Angular Velocity: of a line-segment is equal to the time rate of change of its angular position.

$$\underline{\omega} = \lim_{\Delta t \to 0} \frac{\Delta \underline{\theta}}{\Delta t} = \frac{d\underline{\theta}}{dt} = \underline{\dot{\theta}} = \omega_x \underline{i} + \omega_y \underline{j} + \omega_z \underline{k}$$

$$\underline{\omega} \text{ is a free vector: } \underline{\omega}_b = \underline{\omega}_c$$

$$(2.9)$$

Angular Acceleration: of a line-segment is equal to the time rate of change of its angular velocity.

$$\underline{\alpha} = \frac{d\underline{\omega}}{dt} = \underline{\dot{\omega}} = \underline{\ddot{\theta}} \tag{2.10}$$

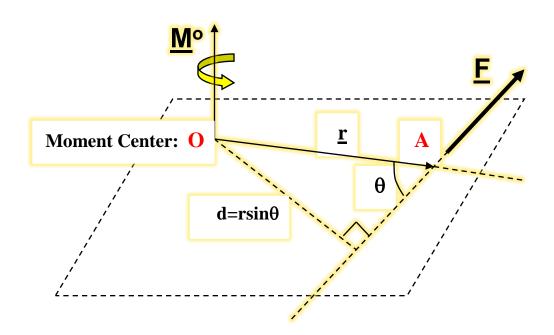
Moment: is the effect of force " \mathbf{F} " about any given point in space called the " $\underline{moment\ center}$ ".

$$\underline{\underline{M}}^{o} = \underline{r} \times \underline{F}$$

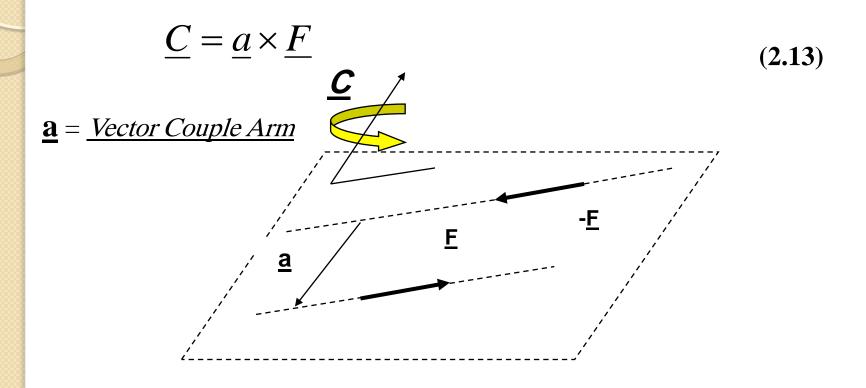
 $\underline{\mathbf{M}}^{\mathbf{o}} = \underline{Moment\ Vector}$ of the force $\underline{\mathbf{F}}$ about the moment center "O".

 $\underline{\mathbf{r}} = \underline{Vector\ Moment\ Arm}$; vector drawn from point "O" to any point like "A" on the line of action of the force $\underline{\mathbf{F}}$.

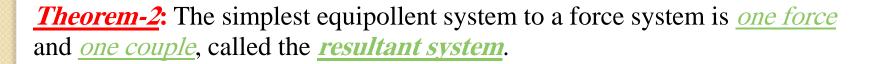
$$\mathbf{M}^{o} = \left| \underline{M}^{o} \right| = \left| \underline{r} \right| \underline{F} \sin \theta = Fr \sin \theta = Fd \quad \{\underline{magnitude} \text{ of } \underline{\mathbf{M}}^{o} \} \quad (2.12)$$



<u>Theorem-1</u>: The moment of an equal and opposite pair of forces is called the <u>Couple</u> " $\underline{\mathbf{C}}$ ", and is invariant to the position of the moment center.



 $(\underline{\mathbf{a}}, \underline{\mathbf{F}}, -\underline{\mathbf{F}} \text{ are } coplanar, \text{ and } \underline{\mathbf{C}} \text{ is } \bot \text{ to the plane})$



Therefore, for a system of N-force $\{\underline{\mathbf{F}}_i\}$ we have:

Resultant Force:

$$(2.14) \underline{F}_R = \sum_{i=1}^N \underline{F}_i$$

(line-of-action of " \underline{F}_R " passes through "O", since all " \underline{F}_i 's are written with respect to "O").

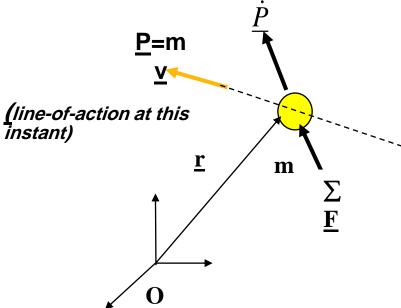
Resultant Couple:

$$\underline{C}_{R} = \underline{M}^{o} = \sum_{i=1}^{N} \underline{r}_{i} \times \underline{F}_{i}$$
(2.15)

 $\{\underline{\mathbf{r}_i}\}\ =\ \text{set of moment arms of }\{\underline{\mathbf{F}_i}\}\ \text{with respect to the moment center "O"}$

Linear-Momentum (Momentum): of a particle is defined by the mass times the velocity of the particle.

$$P = mv (2.16)$$



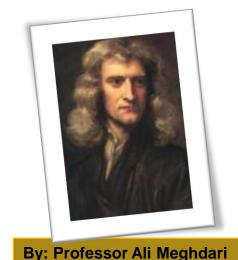
Moment of Momentum (Angular-Momentum): of a particle about a point "O" is defined as:

$$\underline{H}^{o} = \underline{r} \times \underline{P}$$

(2.17)

Newton's 2nd Law: may now be re-stated as "resultant of all forces applied on a particle is equal to the time rate of change of its momentum".

$$\underline{F} = m\underline{a} = m\underline{\dot{v}} = \frac{d}{dt}(m\underline{v}) = \underline{\dot{P}} \qquad \Rightarrow \qquad \underline{F} = \underline{\dot{P}} \quad (2)$$



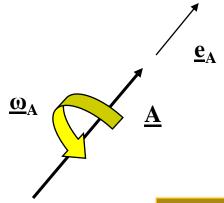
TIME DERIVATIVE OF A VECTOR:

<u>Theorem-3</u>: For a general vector like $\underline{\mathbf{A}} = \mathbf{A}\underline{\mathbf{e}}_{\mathbf{A}}$ which contains the time variation of its magnitude and direction, we have:

{ Jaumann Rate of a Vector}

$$\underline{\dot{A}} = \dot{A}\underline{e}_A + \underline{\omega}_A \times \underline{A}$$
Proof.
(2.19)

$$\underline{\dot{A}} = \dot{A}\underline{e}_A + A\underline{\dot{e}}_A$$
 , where: $\underline{\dot{e}}_A = \underline{\omega}_A \times \underline{e}_A$, $\sin ce \quad |\underline{\dot{e}}_A| = 0$.



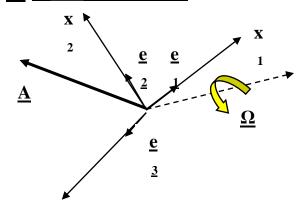
Theorem-4: The time derivative of a vector $\underline{\mathbf{A}}$ in terms of its <u>Cartesian</u> component set $\{A_i\}$, where; $A = A_i(t)e_i(t)$

$$\underline{\dot{A}} = \dot{A}_i \underline{e}_i + \underline{\Omega} \times \underline{A} \tag{2.20}$$

 $\underline{\Omega}$ = angular velocity of the Cartesian coordinate $\{x_i\}$.

First Term: observed/relative change of the vector in the reference frame. <u>Second Term</u>: change in <u>A</u> due to rotation of the coordinates.

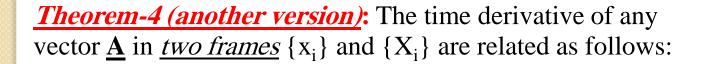
Proof.



$$\underline{\dot{A}} = \dot{A}_i \underline{e}_i + A_i \underline{\dot{e}}_i$$

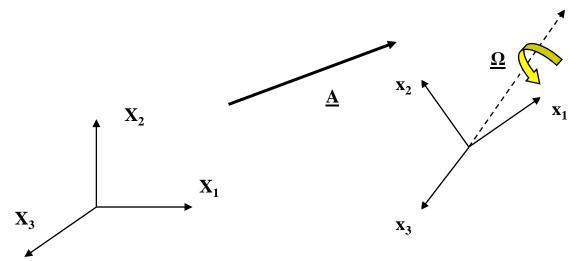
$$\dot{\underline{A}} = \dot{A}_i \underline{e}_i + A_i \dot{\underline{e}}_i \quad , \quad \text{``where:} \quad \dot{\underline{e}}_i = \underline{\Omega} \times \underline{e}_i \,, \quad \sin ce \quad \left| \dot{\underline{e}}_i \right| = 0,$$

$$\underline{\dot{A}} = \dot{A}_i \underline{e}_i + A_i (\underline{\Omega} \times \underline{e}_i) = \dot{A}_i \underline{e}_i + \underline{\Omega} \times A_i \underline{e}_i = \dot{A}_i \underline{e}_i + \underline{\Omega} \times \underline{A}$$



$$(\frac{d\underline{A}}{dt})_{X_1X_2X_3} = (\frac{d\underline{A}}{dt})_{x_1x_2x_3} + \underline{\Omega} \times \underline{A}$$

$$\underline{\Omega} = \text{angular velocity of the Cartesian coordinate } \{x_i\} \text{ in } \{X_i\}.$$
(2.21)



(Equations 20 and 21 enable one to find the time-derivative of $\underline{\mathbf{A}}$ in $\{X_i\}$ without having to resolve $\underline{\mathbf{A}}$ into components parallel to unit vectors fixed in $\{X_i\}$).

DIMENSIONS AND UNITS:

The <u>units</u> specified for the measurement of physical quantities are defined to be consistent with the <u>Newon's 2nd</u> Law: $\underline{\mathbf{F}} = \mathbf{m}\underline{\mathbf{a}}$

For a *freely-falling* object in the vacuum, *Newton's 2nd law*, becomes:

$$\mathbf{W} = \mathbf{mg} \tag{2.22}$$

Where; F = W (weight), a = g (acceleration of gravity).

Note: For a *unit-mass* "m", the *weight* of the object is *g-units* of force. (i.e. Weight = (1) g = g-units of force)

L-M-T (SI, System International) System: The three fundamental units of this system are:

L = length

M = m = mass

T = time

{If L is in Centimeters, M is in Grams, and T is in Seconds, then the <u>unit of Force</u> from Newton's 2^{nd} law will be in <u>dyne</u> (gr.cm/s²)}.

Dyne: a dyne is defined as the force necessary to accelerate **1** gram of mass at a rate of **1** cm/s².

Ex: Since, $g = 980.66 \text{ cm/s}^2$ on the earth, therefore, **1** gram mass weighs about: $W = mg = (1 \text{ gr.})(980.66 \text{ cm/s}^2) = 980.66 \text{ dynes}$.

{If L is in *meters*, M is in *Kilograms*, and T is in *Seconds*, then the <u>unit of Force</u> from

Newton's 2^{nd} law will be in *Newton* (kg.m/s²)}.

<u>Newton</u>: a Newton is defined as the force necessary to accelerate 1 kilogram of mass at a rate of 1 m/s².

Ex: Since, $g = 9.807 \text{ m/s}^2$ on the earth, therefore, **1** kilogram mass weighs about: $W = mg = (1 \text{ kg})(9.807 \text{ m/s}^2) = 9.807 \text{ Newtons}$.

L-F-T (British/US Customary System) System:

The *three fundamental units* of this system are:

L = length

F = Force (instead of mass M)

T = time

{If L is in foot, F is in pounds, and T is in Seconds, then the <u>unit of Mass</u> from Newton's 2^{nd} law, "M=m=W/g", will be in <u>slug</u> (lb.s²/ft)}.

Slug: 1 pound is the force necessary to accelerate 1 slug of mass at a rate of 1 ft/s^2 .

Ex: Since, g = 32.17 ft/s² on the earth, therefore, **1** slug mass weighs about: $W = mg = (1 \text{ slug})(32.17 \text{ ft/s}^2) = 32.17 \text{ lbs}$.

$$\{1 \text{ lb} = 4.46 \text{ Newton}, \qquad 1 \text{ Slug} = 14.63 \text{ kg}\}$$

<u>Dimensions</u>: The fundamental units of **L-M-T** or **L-F-T** systems can be used to represent any physical quantities in mechanics.

When a physical quantity is represented by the fundamental units, the resulting expression is called the <u>dimensional</u> form of that quantity.

Ex: Dimensional form of **Velocity** is **[LT¹]**, and that of **Acceleration** is **[LT²]**.

<u>Theorem-5</u>: <u>The Law of Dimensional Homogeneity</u>: states that physical equations must be homogeneous in dimensional sense (a necessary <u>but not</u> a sufficient condition for correctness of equations, since the validity of dimensionless coefficients could not be checked).

Note that: <u>Dimensions</u> and <u>Units</u> are two different terminologies. <u>For example</u>: the <u>Dimension of Length</u> is always equal to "L", where as <u>Length</u> may be expressed in <u>different units</u> (inches, meters, foot.)

Physical Quantity	L-M-T, (SI) System	L-F-T, (USCS/British) System
Length, L	L	L
Force, F	MLT ⁻²	F
Mass, M, m	M	FL-1T ²
Time, t	Т	Т
Linear Velocity, v	LT-1	LT-1
Linear Acceleration, a	LT-2	LT-2
Angle, θ radians	Dimensionless	Dimensionless
Angular Velocity, ω	T-1	T-1
Angular Acceleration, α	T-2	T-2
Moment, Mo	ML ² T ⁻²	FL
Linear Momentum, P	MLT ⁻¹	FT
Angular Momentum, Ho	ML ² T ⁻¹	FLT
Mass Moment of Inertia, I	ML ²	FLT ²
Area Moment of Inertia, J	\mathbf{L}^4	L^4
Work or Energy, W or E	ML ² T ⁻²	FL
Power \dot{W}	ML ² T ⁻³	FLT-1
Area, A	L^2	L^2
Volume, V	L^3	L^3
Stress, σ	ML-1T-2	FL·2
Modulus of Elasticity, E	ML-1T-2	FL-2
Mass Density, γ	ML-3	FL-4T ²

