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Manipulator Dynamics
» lterative Newton-Euler Dynamic Algorithm:

Outward iterations: 2 : 0 — 5

First: Compute link velocities

t+]"‘)1+l =:+II{ ‘wr+éi+ll+lzz+l! (645)
and accelerations iteratively = =Rt + 1R v x0 20y 400 200 (640
- - g = :HR(iwi X *Piyy 4wy x (fwy X PPy ) + '), (6.47)
from link-1 to link-n, and e e
el = Wit (I

apply the NeWton-EUIer +H wi g x (HAl“"«'H X H]PC,,H) + 1,00, (6.48)
equations to each link. i S e, (6.49)

41 AT Gy i1 - 1 (& i1,
N = L Ty g X TR SR (6.50)

Inward iterations: 7 : 6 — 1

Second: Compute the forces

and torques of interaction S

recursively from link-n P <l Lo
. 7 ="‘nl *Z; (6.53)

back to link-1.

CR=t RV R (6.51)
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Manipulator Dynamics

» Closed-form (Symbolic Form) Dynamic Equations:
Example: The 2-DOF Manipulator Arm.

m,
Assumptions: Point masses at the distal end of each link,
_O_ L2 0
Vy=gY,=|g| (gravity—term) 2
0 Yo 7o m;

“1,=0 :
s (point—mass)
l,=0

Z-1 = m2€22 (81 + 62) + m2€l€ 2C2 (261 + 92) + (ml + mZ)Eiel -
rnZgngSZéZ2 - 2m2€1€282é192 + m2€2gC12 + (ml + m2)€lgcl
72 = m2€1€ 2C2é1 + rnZ€1€282912 + m2€2gC12 + m2€22 (01 + 92)

Actuator torques as a function of joints position, velocity, and acceleration.

© Sharif University of Technology - CEDRA



Manipulator Dynamics

» The Structure of Dynamic Equations

The State-Space Equation:
r=M(O)6+V (0,0)+G(6)
Where:
|\/|(9)Z Mass Matrix of the Manipulator (always symmetric & non-singular)
M (9) - m, 05 +2m,¢.0,C, +(m +m,)¢;  m 05 +m,l.0,C,
m,¢% +m,¢ ¢ ,C, m,/?

V(0, O:x): The Velocity Terms

V(0.6) {— mzzlézsr;é»g zzsm;flzzszéléz}
271+ 2%2¥1

© Sharif University of Technology - CEDRA




Manipulator Dynamics
» The Structure of Dynamic Equations

G(0): The Gravity Term

G(H) _ |:ngng12 T (ml + m2)€19C1:|

m,¢ 2gC12

Including other effects:

F(G, GdOt)Z The Friction Terms (may also-be a function of position 0 as well)
Viscous =7, =vé

Coulomb =z, = Csgn(6) :{ C=Xwhen 6=0 < Static }

C=Ywhen =0 < Dynamic,Y < X

V = viscous, and C = Coulomb friction coefficients

g, A reasonable model: 70, =VO+Csgn(6) = F(6,6)
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Manipulator Dynamics

» The Structure of Dynamic Equations

Finally;
r=M(0)+V (0,0)+G(6)+F(6,6) %F

Note that: we have ignored link flexibility. Only rigid links
are considered (Flexibilities are extremely difficult to model).
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Manipulator Dynamics

» Lagrangian Formulation of Manipulator Dynamics

 The Newton-Euler’s Formulation is a “Force-Balance”
Approach to Dynamics.
 The Lagrangian Formulation is an “Energy-Based”

approach to Dynamics. We can derive the equations of

motion for any n-DOF system by using energy methods.

= All we need to know are the conservative (kinetic and potential) and
non-conservative (dissipative) terms

The general form of Lagrangian Equations of motion (for
Independent set of generalized coordinates) for manipulators

are.
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Manipulator Dynamics

» Lagrangian Formulation of Manipulator Dynamics

d oL oL
F = —
' dtog  oqg +
Where:

L (Lagrangian) — KE (System’s Kinetic Energy) — PE (System’s Potential Energy)

0;- Coordinates in which the Kinetic and Potential energies
are expressed. (Generalized Coordinate)

F;: The corresponding Force or Torqgue, depending on
whether g; is a linear or angular coordinate. (The
Generalized Force)
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Manipulator Dynamics
Ex: 1-DOF system

 Letus derive the equations of motion for a 1-DOF system:

— Consider a particle of mass'm Y

— Using Newton’s second law: - I f
my =f —mg +

— Now define the kinetic and potential energies:

.
K=Z-my* P=mgy

2 = U
— Rewrite the above differential equation
beftsider 4 doa(1_.,) deK
dt dt oy \ 2 dt oy
« Right side:
mg=—(mgy)= 2
oy oy
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Manipulator Dynamics

Thus we can rewrite the initial equation: Y ;
e I +
dtoy oy

Now we make the following definition:
L=K-P

L is called the “Lagrangian”
— We can rewrite our equation of motion again:

d oL oL
dtoy oy
Thus, to define the equation of motion for this system, all we need

IS a description of the potential and Kinetic energies.
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Manipulator Dynamics

« If we represent the variables of the system as “generalized coordinates”,
then we can write the equations of motion for an n-DOF system as:

d o oL
dtog, oq;

« Itis important to recognize the form of the above equation:
— The left side contains the conservative terms
— The right side contains the non-conservative terms

« This formulation leads to a set of n coupled 2" order differential

equations.
_da o

" dtog, oq ~
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Manipulator Dynamics
Ex: 1-DOF system

 Single link, single motor coupled by a drive shaft:
— @, and g are the angular displacements of the shaft and the link
respectively, related by a gear ratio, r:

— Start by determining the Kinetic and potential energies:

K = lJmé?mz +£J,6"|2
2 2

:%(rZJm +J|)9|2

MgL
P = %(1—005@) Mg

— J,,and J, are the motor/shaft and link inertias respectively and M and

L are the mass and length of the link respectively.
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Manipulator Dynamics

Let the total inertia, J, be defined by: J=r23_+J,

Now write the Lagrangian:
L = %Jélz Mgl —~—(1-cosq)

Thus we can write the equation of motion for this 1-DOF system as:

MgL

JO +——sing =1,

The right side contains the non-conservative terms such as:
— The input motor torqgue: u=rz,

— Damping torques: B=rB_+B,
Therefore we can rewrite the equation of motion as:

J6 +B6 +%Sin9| =u
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Manipulator Dynamics -
Example: The 2-DOF Manipulator Arm.

Assumptions: Point masses at the distal end of each link,

Compute the Kinetic and Potential Energies of the System:

K.E) i = KE); + KEY),
P.E.) = P.E); + P.E), Datum

1

For the mass m, we have: K.E), == mlfiélz
P.E.), =mg/,Sing,

X, ={,Cosé, +¢,Cos(6,+6,)
Y, =/£,SIn@, +¢,Sin(6, +6,)

For the mass m, we have:
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Manipulator Dynamics
Example: The 2-DOF Manipulator Arm.

Assumptions: Point masses at the distal end of each link,

For the mass m, we have:

{Xs = _61‘9181 - 62312(6}1 T ‘92)
Yo =0,0,C, +1£,Cy,(6,+6,)

V2 =10207 +05(60,+0,)° +20,0,6,(6,+6,)C,

2 .2 .2
}:>V3 = X3 + Y3

K.E.), = e m2V§ ..........
2

P.E.), =m,0y; =m,9¢,S, +m,q¢,S,,

Therefore: L = K.E.)y —P.E.)q
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Manipulator Dynamics
Therefore: L= K.E.) s —P.E)ys
L = [% (m, + mz)giél2 i % m2€22 (‘91 + ‘92)2 T m26162(:2‘9.1(6}1 i 02)]
—[(m, +m,)gt,S, +m,gl,S,,]

For g, = 9, , we have:

_5'97 =(m, +m,) 026, + m, (% (6, +6,) +2m,¢ ¢ ,C,6, +m.¢ ./ ,C.6,
1
d oL o : 2 -
1

—2m,(,0,S,6,6, —m,(,0,S,6>
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Manipulator Dynamics
Therefore: L= K.E.) s —P.E)ys

oL
~ _(ml + mz)gflcl —m, g€ 2C12
00,

For g, =9, , we have:

__da o
b dtog, a6,

Z-1 = m2€22 (91 + 02) + m2€1€2c2 (291 + 92) + (ml + mZ)gin _
m2€1€282922 o 2m2€1€282é192 + m2€29C12 + (ml + m2)€1gC1
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Manipulator Dynamics

1 1 . o
L = [E (m, +m, )56 + 2 M, 056, +6,)° +myl10,C,0,(6; +6,)]

o [(ml + mz)gflsl + mz 962812]
For g, = 0, , we have:

oL L . oL YD L L
£ - ngé (0, +0,)+m,( 0,C.0, —= —m,(,0,5,6, (91 T 92) —M, g0, s,
g 2
g aL = ngé (Hl + 02) + nglf 2C2é1 o nglg 2829192
dt 06,

__doL o
° dtoe, o0,

TZ — m2€1€ 2C2é1 + rnZ€1€232912 + m2€2gC12 + m2€22 (91 + 92)
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Manipulator Dynamics

» Formulating Dynamic Equations in Cartesian Space

In Joint Space: The General form of Dynamic Equations is:

- r=M(0)0+V (6,0)+G(6)

t: The Vector-of Joint Torques
0: The Vector of Joint VVariables

Sometimes it is important to have the Dynamic Equations
In Cartesian Space as:

f =M (&)X +V,(6,6)+G,(6) X

Where:
f: The Force-Torgue acting at the tip of the arm
X: A Cartesian Vector representing position & orientation of the
end-effector
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Manipulator Dynamics

» Formulating Dynamic Equations in Cartesian Space

In Cartesian Space:

f =M (&)X +V, (6,0)+G,(6)

Where:
f: The Force-Torque acting at the tip of the arm
X: A Cartesian Vector representing position & orientation of
the end-effector
M, (0): Cartesian Mass Matrix
VX(O)Z Vector of Velocity Terms in Cartesian Space
G, (0): Gravity Terms in Cartesian Space

To obtain Dynamic Equations in Cartesian Space, we have:
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Manipulator Dynamics

» Formulating Dynamic Equations in Cartesian

SPaCe T (9)f == f

Note that: - - — M (6’)6’ +V (0, 6?) +G(O)

Pre-multiplying J-T on the above equation:
3T r=3TM@)F+IV(0,0)+ITGO)=f <
But from the definition of Jacobian we have:
X=J0=>X=J0+J0=0=1"X-1"6
Substituting in Equation (*), we have:
s [ =7 M(6)) X —JTM(0)II6+ITV(O,0)+ I TG(H)
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Manipulator Dynamics

» Formulating Dynamic Equations in Cartesian Space

f=J"M@B)IX-ITM@B)II0+IV(,6)+I "G(6)
=+
M. (6)=J"M(©)JI

V.(6,6)=J"TV(0,0)-M(8)] 6]

G, (0) = J " G(6)

Where:
J: Jacobian written in the same frame as f and X.
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Manipulator Dynamics

Example: The 2-DOF Manipulator Arm.
I 6182 O — J—l _ 1 62
G+l Ly 00,5, —0,C,—1,

i(0) - ¢.C,0, o}
1

3(6) =

6182i|

—0,S,0, 0 f

M,(0), V.(0), G,(0) are found as follows: v,
D

M@= ™"s, ° -
0 m,

m &+m S
vx(e){"}, G,(0)=| I, " I
ngclz
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Manipulator Dynamics

> Dynamic Simulation: Given the vector of joint torques, compute the
resulting motion of the arm (forward dynamic).

To simulate the motion of a manipulator arm, we need the
dynamic equations as:

r=M(0)0+V (0,0)+G(0)+F(6,0) +

Solve for;
0=M"6O)[r-V(6,0)-G(0)-F(@,0)]

Then, integrate to get 1.6} numerically (Runge-Kutta, Euler
Method, etc.), given the initial conditions on the motion of the
Fe arm (1.e. 6(0)=6,,6(0)=0,etc. ).
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Exercises:

6.1, 6.2,6.4, 6.5
Programming Exercises:
6.1, 6.2

MATLAB Exercise: 6A

© Sharif University of Technology - CEDRA



Programming Exercises:. 6.1, 6.2

@

Robotic Project.exe
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