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Joint Velocity/Static Forces 

and the Jacobian

Look! I’m 

moving!
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Chapter Objectives

By the end of the Chapter, you should be able to:

• Characterize frame velocity

• Compute linear and rotational velocity

• Compute Jacobian and robot singularities

• Relate joint forces (forces & torques) to Cartesian 

forces of the tip of the manipulator arm in a linear 

fashion
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 Jacobian of the Manipulator:

 A matrix quantity called the Jacobian

specifies a mapping from velocities in 

{Joint Space} to velocities in {Cartesian 

space}.

 For a desired contact “static” {force 

and moment}, Jacobian can also be 

used to compute the set of {Joint 

Torques} required to generate them.

Jacobians: Velocities & Static Forces
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• Studying Dynamics requires knowledge of 

Velocities and Accelerations:

 Notation for Time-Varying Position & 

Orientation:

Differentiation of Position Vectors:

Consider a point Q in space,

and the position vector BPQ: 

Jacobians: Velocities & Static Forces
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• Velocity of a position vector is the velocity of 

the point that vector describes:

If the point Q does not move relative to {B}, then its 

velocity is zero, even if it moves with respect to another 

frame like {A}.  It is important to indicate the frame in 

which the position vector is differentiated.

Ex: (Rigid Body Motion)

Jacobians: Velocities & Static Forces
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• Just like any other vector, the Velocity 

vector can also be described in terms of any 

frame:

Ex: The velocity vector “BVQ” expressed in terms of 

another frame like {A}, would be written as:  

Rotation transformation is used to map velocity vector 

from frame {A} to frame {B}.  (Recall that velocity and accelerations are 

free vectors)

Jacobians: Velocities & Static Forces
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(Note that the frame with respect to which the differentiation is done, is important.)
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 If the point in question “Q” is the origin of a frame {C}, 
and the differentiation is done with respect to a Universe
frame {U}, then we may write:

{velocity of origin of {C} relative to {U}}.  Then;

{velocity of {C}ORG relative to Universe

{U}, expressed in frame {A}}.

Jacobians: Velocities & Static Forces
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 Ex: Consider the following one-link manipulator as shown:

Jacobians: Velocities & Static Forces
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 The Angular Velocity Vector: Angular velocity “” 
describes rotational motion of a frame attached to a body. 
Lets define the following:


AB: Angular Velocity of frame {B} relative to {A}.


C(AB): Angular Velocity of frame {B} relative to {A}, 

expressed in {C}.

k: Unit vector along the axis of rotation.

 Relative to Universal frame,

we can write:

Jacobians: Velocities & Static Forces
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 Linear and Rotational Velocity of Rigid Bodies:
Consider a point “Q” in space, and describe its kinematics in 
two frames {A} and {B}.

From Chapter-2 we have:

 Differentiating with respect to time results:

Jacobians: Velocities & Static Forces
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 Linear Velocity (Translation Only) of Rigid Body 
(AB=0):

 Angular Velocity (Rotation Only) of Rigid Body 
(AVBORG=0): (Frames {A} and {B} coincident);

Jacobians: Velocities & Static Forces
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 Motion of the Links of a Robot: in studying robot 
motion, we define:

 Frame {0}: A reference frame

 vi: Linear velocity of the origin of link frame {i},

 i: Angular velocity of the link frame {i}.

At any instant, each link of a robot in motion has some linear and 
angular velocity defined by:


ivi: Linear velocity of the origin of link 

frame {i} with respect to {U}, and

written in frame {i},


ii: Angular velocity of the link frame

{i} with respect to {U}, and written

in frame{i}.

Jacobians: Velocities & Static Forces
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 Velocity Propagation from Link to Link: A 

manipulator is a chain of rigid bodies, each one capable of 

motion relative to its neighbors.  To study its motion:

 Start from base, and work out to link n. 

 Each link is a R.B. with some v and  expressed in the link’s frame.

 Angular velocities from link to link may be added as long as they are 

expressed in the same frame.

Jacobians: Velocities & Static Forces
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Velocity Propagation
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 Velocity Propagation from Link to Link:

 Angular velocity of link i+1 is equal to the angular velocity of link i plus the new 
angular velocity component at joint i+1, all expressed in frame {i}.   

 The R-matrix is used to express the new angular velocity at joint i+1 in frame {i}.

Jacobians: Velocities & Static Forces
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 Velocity Propagation from Link to Link:

 Pre-multiplying both sides of this equation by            , we have:

 Dynamics has a Recursive nature in manipulators.  If you know i, you can 
find i+1.

Jacobians: Velocities & Static Forces
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 Velocity Propagation from Link to Link:

 Linear Velocity of the origin of frame {i+1} is equal to the linear velocity of 
origin of frame {i} plus the new velocity component due to the rotation of 
link i, all expressed in frame {i}.  Similar to: 

 Pre-multiplying both sides of this equation by            , we have:

 Equations (*) and (**) are for when the joint i+1 is Revolute. 

Jacobians: Velocities & Static Forces
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 Velocity Propagation from Link to Link:

 If the joint i+1 is Prismatic (Sliding), then we have: 

 Using these relations from link to link one can compute the linear “nvn” 

and angular “nn” velocities of the last link of the manipulator. 

 If we wish to compute the linear and angular velocities of the last link n in 

terms of frame {0}, we can compute them as follows:

Jacobians: Velocities & Static Forces
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 Example: Consider the 2-link manipulator shown.  Find the 

tip velocity as a function of joint rates            in terms of frames 

{0} and {3}?

 Since the joints are Revolute, then: 

Jacobians: Velocities & Static Forces
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 Start from the fixed frame {0}, or i=0:

 For i=1: 

Jacobians: Velocities & Static Forces
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 For i=2:

Jacobians: Velocities & Static Forces
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 Jacobians in Robotics: Relates joint velocities to 

Cartesian velocities of the tip of the manipulator arm.

 In Mathematics = Multidimensional Derivative

 Given a vector function of several variables such as;

Jacobians: Velocities & Static Forces
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 Using Chain-Rule, differentials of yi as a function of 

differentials of xj are expressed as:

Jacobians: Velocities & Static Forces
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 Presenting the differentials using vector notation as:

 Jacobian of Partial Derivatives 

 If the functions f1(X)…f6(X) are non-linear, then the 

partial derivatives are a function of xi, therefore:  

Jacobians: Velocities & Static Forces
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 Dividing both sides by the differential time element:

 Jacobians are time varying linear transformations.  

At any particular instant, X has a certain value, and 

J(X) is a linear transformation.  At each new instant, 

X has changed and therefore so has the linear 

transformation.

Jacobians: Velocities & Static Forces
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 In Robotics: Jacobian relates joint velocities to 

Cartesian velocities of the tip of the manipulator arm 

in a linear fashion.

 Where:

Jacobians: Velocities & Static Forces
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 Note that this is an instantaneous relationship, since in the next 

instant the Jacobian has changed slightly.

 For a robot with 6-joints:

 Jacobian is a (66) matrix:

 Vector of joint rates is a (61) vector:

 Vector of Cartesian tip velocity is a (61) vector:

Jacobians: Velocities & Static Forces
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Jacobian in general is an (m  n) matrix = Jmn :

# of Rows = # of D.O.F. in Cartesian Space = m

# of Columns = # of Joints of the Manipulator = n


