

Two Phase Flows

(Section 9) Introduction to Pool and Convective Boiling

By: Prof. M. H. Saidi

Center of Excellence in Energy Conversion School of Mechanical Engineering Sharif University of Technology

Elementary Thermodynamics of Vapor/Liquid Systems

Multiphase Flow Research Group School of Mechanical Engineering

Basic Process of Boiling

Superheat Requirements for vapour nucleation:

$$p_g - p_f = \frac{2s}{r^*}$$

$$p_g = p_{\infty} \exp\left(-2sv_f M / r^* RT\right) \approx p_{\infty} \left(1 - \frac{2sv_f}{p_{\infty} r^* v_g}\right)$$

Using Clausius-Clapeyron equation: $p_{\infty} - p_{g} = \frac{2s}{r^{*}} \left(1 + \frac{v_{f}}{v_{g}} \right)$ With this assumptions: $\frac{dp}{dT} = \frac{Ji_{fg}}{T \left[v_{g} - v_{f} \right]}$ $\frac{1}{p} dp = \frac{Ji_{fg}M}{RT^{2}} dT$

Multiphase Flow Research Group School of Mechanical Engineering

Basic Process of Boiling

Multiphase Flow Research Group School of Mechanical Engineering

Heterogeneous Nucleation

Multiphase Flow Research Group School of Mechanical Engineering

Pool and Convective Boiling

(d)

Heterogeneous Nucleation

Multiphase Flow Research Group School of Mechanical Engineering

Bubble detachment and frequency:

$$D_{d} = 0.0208 q \left[\frac{s}{g \left(r_{f} - r_{g} \right)} \right]^{\frac{1}{2}}$$

$$fD_d = 0.59 \left[\frac{s g \left(r_f - r_g \right)}{r_f^2} \right]^{\frac{1}{4}}$$

Multiphase Flow Research Group School of Mechanical Engineering