

Two Phase Flows

(Section 6)

By: Prof. M. H. Saidi

Center of Excellence in Energy Conversion School of Mechanical Engineering Sharif University of Technology

Two Phase Flows

Homework set#2

Problems 5-9; Chapter 1, Collier and Thome.

Due to next Tuesday

Baroczy Method

Baroczy (for flux of mass flow rate 1365 kg/m².s)

Physical property index $\left(\frac{\mu_{\rm f}}{\mu_{\rm g}}\right)^{0.2}$ $\overline{\left(\frac{\rho_{\rm f}}{\rho_{\rm g}}\right)}$									1:	0/1					
	0.1	0.5	1	2	3.5	5	7.5	10 vapour	15	20 20		40	60	80	100
	2.20	6.00		16.0	26.5	47.0	00.0	141	276	620	1200	2050	4300	6600	10.000
0.0001	2.20	5.80	9.20	16.0	20.5	47.0	99.0	70.0	108	148	240	336	538	760	1,000
0.001	2.15	3.00	0.0U 7.80	14.0	163	22.8	20.0	36.0	49 5	63.0	86.0	110	155	203	250
0.004	1.50	3 30	4.80	7.00	9.60	12.0	160	20.0	27.0	33.5	43.5	53.0	69.0	85.0	100
0.01	1 12	1.55	1.81	2.57	3.45	4.7	6.10	7.90	11.0	13.2	17.3	21.2	26.0	30.0	33.3
0.05	1.04	1.12	1.22	1.48	1.78	2.05	2.50	2.80	3.60	4.20	5.50	6.50	8.00	9.10	10.0
0.3	1.01	1.02	1.06	1.13	1.26	1.36	1.50	1.59	1.77	1.93	2.25	2.48	2.86	3.20	3.3
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Multiphase Flow Research Group School of Mechanical Engineering

Chisholm method

Multiphase Flow Research Group School of Mechanical Engineering

School of Mechanical Engineering

Chisholm method

for $G^* \leq G$

for smooth and rough pipe

Multiphase Flow Research Group School of Mechanical Engineering

20

40

Steam quality - % by wt.

ഞ

80

100

٥

Multiphase Flow Research Group School of Mechanical Engineering

Multiphase Flow Research Group School of Mechanical Engineering

Two phase flow in inclined pipes

Multiphase Flow Research Group School of Mechanical Engineering

Effect of heat flux on the void fraction and pressure gradient

Tarasova (1966) and Leont'ev (1965) find a relationship between heat flux and pressure gradient

Tarasova and Leont'ev proposed a empirical equation for friction multiplayer in the isolation pipe for water-steam system

$$(f_{fo}^2)_{heated Tube} = (f_{fo}^2)_{Unheated Tube} [1 + 4.4 * 10^{-3} (\frac{f}{G})^{0.7}]$$

Multiphase Flow Research Group School of Mechanical Engineering