

Two Phase Flows

(Section 5) The Basic Model

By: Prof. M. H. Saidi

Center of Excellence in Energy Conversion School of Mechanical Engineering Sharif University of Technology

Homogeneous Model

Assumptions:

- \emptyset Velocity of gas and liquid phases are equal. $U_g = U_f$
- Establishment of thermodynamic equilibrium between phases.
- Ø Using the single phase friction coefficient which is appropriately defined for two phase flow.
- This model appropriate for bubbly and wispy annular regime.

Homogeneous Model

Multiphase Flow Research Group School of Mechanical Engineering

Viscosity method

Two phase frictional multiplier

Steam quality % by wt.	Pressure, bar (psia)								
	1.01 (14.7)	6.89 (100)	34.4 (500)	68.9 (1000)	103 (1500)	138 (2000)	172 (2500)	207 (3000)	221.2 (3206)
5	67.6	12.18	3.12	1.89	1.49	1.28	1.16	1.06	1.0
10	121.2	21.8	5.06	2.73	1.95	1.56	1.30	1.13	1.0
20	212.2	38.7	7.8	4.27	2.81	2.08	1.60	1.25	1.0
30	292.8	53.5	11.74	5.71	3.60	2.57	1.87	1.36	1.0
40	366	67.3	14.7	7.03	4.36	3.04	2.14	1.48	1.0
50	435	80.2	17.45	8.30	5.08	3.48	2.41	1.60	1.0
60	500	92.4	20.14	9.50	5.76	3.91	2.67	1.71	1.0
70	563	104.2	22.7	10.70	6.44	4.33	2.89	1.82	1.0
80	623	115.7	25.1	11.81	7.08	4.74	3.14	1.93	1.0
90	682	127	27.5	12.90	7.75	5.21	3.37	2.04	1.0
100	738	137.4	29.8	13.98	8.32	5.52	3.60	2.14	1.0

Multiphase Flow Research Group School of Mechanical Engineering

Using empirical correlation to calculating friction coefficient in homogenous model

