

Two Phase Flows

(Section 2) Introduction

By: Prof. M. H. Saidi

Center of Excellence in Energy Conversion School of Mechanical Engineering Sharif University of Technology

School of Mechanical Engineering

Multiphase Flow Research Group School of Mechanical Engineering

- ü Thermodynamic Equilibrium does not exist.
- ü Fully developed concept is meaningless.
- ü 1D assumption can be applied.
- ü Convective heat transfer is more effective than single phase flows.
- ü Hydrodynamic and Thermodynamic properties change in direction of flow.
- ü pressure drop, heat transfer and mass transfer are function of flow patterns.

Multiphase Flow Research Group School of Mechanical Engineering

a local time average gas fraction = comulation residence time of the gas phase total time interval

By means of local electrical and optical probes.

an instantenous line-average gas fraction =

length of line submerged in gas phase

total length of line within the channel

By means of x or gamma ray.

Another (Mechanical) way is using quick closing valve

Multiphase Flow Research Group School of Mechanical Engineering

Flow Pattern in Vertical Co-Current Flow

Wispy Slug **Bubbly** Churn Annular Bubbly Slug Churn Annular Wispy-Annular Flow patterns in vertical upward flow in a tube

Multiphase Flow Research Group School of Mechanical Engineering

Transition Flow Pattern

Multiphase Flow Research Group School of Mechanical Engineering

Multiphase Flow Research Group School of Mechanical Engineering

Picture of Flow Pattern in Horizontal Adiabatic Flow

Flow Pattern in Horizontal Heated Channel

Multiphase Flow Research Group School of Mechanical Engineering

School of Mechanical Engineering

Horizontal Flow Pattern Map and Transition

Multiphase Flow Research Group School of Mechanical Engineering

Transition for Horizontal Flow

- a. Stratified to non-stratified
- **b. Bubbly flow transition**
- ü Little bubble coalescence and formation of large bubble
- ü Turbulence fluctuation break the bubbles
- ü Gravitational force lift bubbles
- c. Transition to annular flow
- d. Annular flow to wispy-annular flow transition