

Sharif University of Technology School of Mechanical Engineering Center of Excellence in Energy Conversion

Advanced Thermodynamics

Lecture 8

Dr. M. H. Saidi

2011

Ad. ThermodynamicsLegendre TransformationDr. M. H. SaidiY = Y(X)y = y(P) $P = \frac{dY}{dX}$ $-X = \frac{dy}{dP}$ y = -PX + YY = X P + yElimination of X and Y yieldsElimination of P and Y yieldsY = Y(P)Y = Y(X)

- \emptyset Y = Y(X) is a fundamental relation in *Y*-representation.
- \emptyset y = y(P) is a fundamental relation in *Y*-representation.
- Ø The generalization of the Legendre Transformation to functions of more than a single independent variable is straightforward. It may be applied for a (t+2)-dimensional hyper-surface $Y = Y(X_0, X_1, ..., X_t)$

 $Y = Y(X_0, X_1, ..., X_t)$ Eq.(1) $P_k = \frac{\partial Y}{\partial X}$ $\mathbf{y} = -PX + Y$ $dY = \sum_{k=1}^{r} P_k dX_k$ $Y [P_0, ..., P_n] = Y - \sum_{k=1}^{n} P_k X_k$ Elimination of *Y* and X_0, X_1, \dots, X_n from Eqs. (2), (4), and the first n+1Eqs. of (3) yields the transformed fundamental relation.

 $Y = Y[P_0, P_1, \dots, P_n] =$ function of $P_0, P_1, \dots, P_n, X_{n+1}, \dots, X_t = \text{Eq.}(2)$ Eq.(2) is obtained by making transformation W.R.T. $X_0, X_1, ..., X_n$ on the Eq. (1). $\begin{cases} -X_{k} = \frac{\partial Y[P_{0}, \dots, P_{n}]}{\partial P_{k}}, & k \leq n \\ P_{k} = \frac{\partial Y[P_{0}, \dots, P_{n}]}{\partial X_{k}}, & k > n \end{cases}$ Eq.(3) $dY [P_0,...,P_n] = -\sum_{k=0}^{n} X_k dP_k + \sum_{k=0}^{t} P_k dX_k$ $Y = Y[P_0, ..., P_n] + \sum_{0}^{n} P_k X_k$ Eq.(4) Elimination of $Y[P_0,...,P_n]$ and $P_0,P_1,...,P_n$ from Eqs. (2), (4), and first n+1 Eqs. of (3) yields the original fundamental relation.

- Ø The Legendre transformations may be applied into physical applications, such as the thermodynamics, Lagrangian, and Hamiltonian mechanics.
- Ø Application of Legendre transformations to thermodynamic:
 - **Ø** Fundamental relation, $Y = Y(X_0, X_1, ..., X_t)$, may be interpreted as $U = U(S, V, N_1, ..., N_t)$
 - **Ø** Derivatives P_0, P_1, \dots, P_t correspond to the intensive parameters $T, -P, m_1, m_2, \dots, m_t$
 - Ø The Legendre transformed functions are called thermodynamic potentials, such as the Helmholtz, enthalpy, and Gibbs functions.

Ø Helmholtz potential (Helmholtz free energy), F or A, is that partial
Legendre transform of U replaces the entropy by the temperature as
independent variable.

 $\boldsymbol{\emptyset}$ With the previous notation $F \equiv U[T]$

 $U = U(S, V, N_1, ..., N_t)$ $F = F(T, V, N_1, ..., N_t)$ $T = \frac{\partial U}{\partial S}$ F = U - T S F = U - T S E limination of U and S yields $F = F(T, V, N_1, ..., N_t)$ $F = F(T, V, N_1, ..., N_t)$ $F = F(T, V, N_1, ..., N_t)$ $F = F(T, V, N_1, ..., N_t)$

$$dF = -S \ dT - P \ dV + \sum_{i=1}^{i} \mathbf{m}_{i} \ dN_{i}$$

- $\mathbf{\emptyset}$ Enthalpy, *H*, is a partial Legendre transform of *U* which replaces the volume by the pressure as independent variable.
- $\boldsymbol{\emptyset}$ With the previous notation $H \equiv U[P]$

 $U = U(S, V, N_{1},..., N_{t})$ $-P = \frac{\partial U}{\partial V}$ H = U + PV H = U + PV $H = H(S, P, N_{1},..., N_{t})$ $H = H(S, P, N_{1},..., N_{t})$ $H = H(S, V, N_{1},..., N_{t})$ $H = H(S, V, N_{1},..., N_{t})$ $H = H(S, V, N_{1},..., N_{t})$

$$dH = T \, dS + V \, dP + \sum_{i=1}^{t} \mathbf{m}_i \, dN_i$$

 \emptyset Gibbs function (Gibbs free energy), *G*, is partial Legendre transform which simultaneously replaces the entropy by the temperature and the volume by the pressure as independent variables, $G \equiv U[T, P]$

$U = U(S, V, N_1,, N_t)$	$G = G(T, P, N_1,, N_t)$
$T = \partial U / \partial S$	$-S = \partial G / \partial T$
$-P = \partial U / \partial V$	$V = \partial G / \partial P$
G = U - T S + PV	U = G + T S - PV
Elimination of U , S , and V yields	Elimination of <i>G</i> , <i>T</i> , and <i>P</i> yields
$G = G(T, P, N_1,, N_t)$	$U = U(S, V, N_1,, N_t)$

$$dG = -S \ dT + V \ dP + \sum_{i=1}^{i} \mathbf{m}_i \ dN_i$$

U = U(S, V, N)	U[T, m] = function of T, V, and m
$T = \partial U / \partial S$	$-S = \partial U [T, m] / \partial T$
$m = \partial U / \partial N$	$-N = \partial U [T, m] / \partial m$
U[T, m] = U - T S - m N	U = U[T, m] + TS + mN
Elimination of <i>U</i> , <i>S</i> , and <i>N</i> yields	Elimination of $U[T, m]$ and m
U[T, m] as a function of T, V, and m	yields $U = U(S, V, N)$

$$dU[T, m] = -S dT - P dV - N dm$$