# Sharif University of Technology <br> School of Mechanical Engineering <br> Center of Excellence in Energy Conversion <br> Advanced Thermodynamics 

## Lecture 8

Dr. M. H. Saidi

2011

$$
\begin{gathered}
Y=Y(X) \\
P=\frac{d Y}{d X} \\
\psi=-P X+Y
\end{gathered}
$$

Elimination of $X$ and $Y$ yields

$$
\psi=\psi(P)
$$

$$
\begin{gathered}
\psi=\psi(P) \\
-X=\frac{d \psi}{d P} \\
Y=X P+\psi
\end{gathered}
$$

Elimination of $P$ and $\quad \psi$ yields

$$
Y=Y(X)
$$

$\ddot{\mathrm{y}} \quad Y=Y(X)$ is a fundamental relation in $Y$-representation.
$\ddot{y} \quad \psi=\psi(P)$ is a fundamental relation in $\psi$-representation.
$\ddot{y}$ The generalization of the Legendre Transformation to functions of more than a single independent variable is straightforward. It may be applied for a $(t+2)$-dimensional hyper-surface $Y=Y\left(X_{0}, X_{1}, \ldots, X_{t}\right)$

$$
\begin{gather*}
Y=Y\left(X_{0}, X_{1}, \ldots, X_{t}\right) \text { Eq.(1) } \\
P_{k}=\frac{\partial Y}{\partial X_{k}} \\
\Psi=-P X+Y \\
d Y=\sum_{0}^{t} P_{k} d X_{k}  \tag{3}\\
Y\left[P_{0}, \ldots, P_{n}\right]=Y-\sum_{0}^{n} P_{k} X_{k}
\end{gather*}
$$

Elimination of $Y$ and $X_{0}, X_{1}, \ldots, X_{n}$ from Eqs.
(2), (4), and the first $n+1$

Eqs. of (3) yields the transformed fundamental relation.

$$
\begin{aligned}
& Y=Y\left[P_{0}, P_{1}, \ldots, P_{n}\right]=\text { function of } \\
& P_{0}, P_{1}, \ldots, P_{n}, X_{n+1}, \ldots, X_{t} \quad \text { Eq.(2) }
\end{aligned}
$$

Eq.(2) is obtained by making transformation W.R.T. $X_{0}, X_{1}, \ldots, X_{n}$ on the Eq. (1).

$$
\begin{cases}-X_{k}=\frac{\partial Y\left[P_{0}, \ldots, P_{n}\right]}{\partial P_{k}}, & k \leq n \\ P_{k}=\frac{\partial Y\left[P_{0}, \ldots, P_{n}\right]}{\partial X_{k}}, & k>n\end{cases}
$$

$d Y\left[P_{0}, \ldots, P_{n}\right]=-\sum_{0}^{n} X_{k} d P_{k}+\sum_{n+1}^{t} P_{k} d X_{k}$

$$
Y=Y\left[P_{0}, \ldots, P_{n}\right]+\sum_{0}^{n} P_{k} X_{k} \quad \text { Eq.(4) }
$$

Elimination of $Y\left[P_{0}, \ldots, P_{n}\right]$ and $P_{0}, P_{1}, \ldots, P_{n}$ from Eqs. (2), (4), and first $n+1$ Eqs. of (3) yields the original fundamental relation.
$\ddot{y}$ The Legendre transformations may be applied into physical applications, such as the thermodynamics, Lagrangian, and Hamiltonian mechanics.
$\ddot{y}$ Application of Legendre transformations to thermodynamic:
$\ddot{\mathrm{y}}$ Fundamental relation, $Y=Y\left(X_{0}, X_{1}, \ldots, X_{t}\right)$, may be interpreted as $U=U\left(S, V, N_{1}, \ldots, N_{t}\right)$
$\ddot{\mathrm{y}}$ Derivatives $P_{0}, P_{1}, \ldots, P_{t} \quad$ correspond to the intensive parameters $T,-P, \mu_{1}, \mu_{2}, \ldots, \mu_{t}$
$\ddot{y}$ The Legendre transformed functions are called thermodynamic potentials, such as the Helmholtz, enthalpy, and Gibbs functions.
$\ddot{y} \quad$ Helmholtz potential (Helmholtz free energy), $F$ or $A$, is that partial Legendre transform of $U$ replaces the entropy by the temperature as independent variable.
$\ddot{y}$ With the previous notation $F \equiv U[T]$

$$
\begin{gathered}
U=U\left(S, V, N_{1}, \ldots, N_{t}\right) \\
T=\frac{\partial U}{\partial S} \\
F=U-T S
\end{gathered}
$$

Elimination of $U$ and $S$ yields

$$
F=F\left(T, V, N_{1}, \ldots, N_{t}\right)
$$

$$
\begin{gathered}
F=F\left(T, V, N_{1}, \ldots, N_{t}\right) \\
-S=\frac{\partial F}{\partial T} \\
U=F+T S
\end{gathered}
$$

Elimination of $F$ and $T$ yields

$$
U=U\left(S, V, N_{1}, \ldots, N_{t}\right)
$$

$$
d F=-S d T-P d V+\sum_{i=1}^{t} \mu_{i} d N_{i}
$$

$\ddot{\mathrm{y}}$ Enthalpy, $H$, is a partial Legendre transform of $U$ which replaces the volume by the pressure as independent variable.
$\ddot{\mathrm{y}}$ With the previous notation $H \equiv U[P]$

$$
\begin{array}{c|c}
U=U\left(S, V, N_{1}, \ldots, N_{t}\right) & H=H\left(S, P, N_{1}, \ldots, N_{t}\right) \\
-P=\frac{\partial U}{\partial V} & V=\frac{\partial H}{\partial P} \\
H=U+P V & U=H-P V
\end{array}
$$

Elimination of $U$ and $V$ yields
Elimination of $H$ and $P$ yields

$$
U=U\left(S, V, N_{1}, \ldots, N_{t}\right)
$$

$$
d H=T d S+V d P+\sum_{i=1}^{t} \mu_{i} d N_{i}
$$

$\ddot{\mathrm{y}}$ Gibbs function (Gibbs free energy), $G$, is partial Legendre transform which simultaneously replaces the entropy by the temperature and the volume by the pressure as independent variables, $G \equiv U[T, P]$

$$
\begin{gathered}
U=U\left(S, V, N_{1}, \ldots, N_{t}\right) \\
T=\partial U / \partial S \\
-P=\partial U / \partial V \\
G=U-T S+P V
\end{gathered}
$$

Elimination of $U, S$, and $V$ yields

$$
G=G\left(T, P, N_{1}, \ldots, N_{t}\right)
$$

$$
\begin{gathered}
G=G\left(T, P, N_{1}, \ldots, N_{t}\right) \\
-S=\partial G / \partial T \\
V=\partial G / \partial P \\
U=G+T S-P V
\end{gathered}
$$

Elimination of $G, T$, and $P$ yields

$$
U=U\left(S, V, N_{1}, \ldots, N_{t}\right)
$$

$$
d G=-S d T+V d P+\sum_{i=1}^{t} \mu_{i} d N_{i}
$$

$\ddot{y}$ A thermodynamic potential, which is useful in statistical mechanical theory, may be introduced for a single component simple system as $U[T, \mu]$

$$
\begin{array}{c|c}
U=U(S, V, N) & U[T, \mu]=\text { function of T, V, and } \mu \\
T=\partial U / \partial S & -S=\partial U[T, \mu] / \partial T \\
\mu=\partial U / \partial N & -N=\partial U[T, \mu] / \partial \mu \\
U[T, \mu]=U-T S-\mu N & U=U[T, \mu]+T S+\mu N
\end{array}
$$

Elimination of $U, S$, and $N$ yields Elimination of $U[T, \mu, T T$ and $\quad \mu$ $U[T, \mu]$ as a function of $\mathrm{T}, \mathrm{V}$, and $\mu$ yields $\quad U=U(S, V, N)$

$$
d U[T, \mu]=-S d T-P d V-N d \mu
$$

