

Sharif University of Technology School of Mechanical Engineering Center of Excellence in Energy Conversion

Advanced Thermodynamics

Lecture 7

Dr. M. H. Saidi

2011

- $\boldsymbol{\varnothing}$ Postulate #2 \longrightarrow
 - Ø fundamental equation can be written with the energy or entropy as the dependent quantities (in terms of U or S), respectively. $S = S(U, V, N_1, ..., N_r)$ or $U = U(S, V, N_1, ..., N_r)$
- \emptyset Postulate #3 \longrightarrow
 - $\boldsymbol{\emptyset}$ S is continuous, differentiable, homogeneous, and first-order. $S = S = \sum S_i$ and $S(aU, aV, aN_i) = a S(U, V, N_i)$
 - **Ø** S is increase monotonically W.R.T. U, $(\partial S/\partial U)_{V, N_1, \dots, N_r} > 0$
- $\boldsymbol{\varnothing}$ Postulate #4 \longrightarrow

$$\left(\frac{\partial S}{\partial U}\right)_{V, N_1, \dots, N_r} = 0 \qquad (S = 0 \quad at \quad T = 0^\circ K)$$

- \emptyset Equilibrium condition $\longrightarrow dS=0$, Stability condition $\longrightarrow dS<0$
- Ø Entropy Maximum Principle: The equilibrium value of any unconstrained internal parameter is such as to maximize the entropy for the given value of the total internal energy.
- Ø Energy Minimum Principle: The equilibrium value of any unconstrained internal parameter is such as to minimize the energy for the given value of the total entropy.
- $\boldsymbol{\emptyset}$ These two principles are shown to be equivalent.
- Ø Interchangeability of the roles of energy and entropy suggests the first reformulation of the thermodynamic formalism.

- **Ø** The extensive parameters are mathematically independent variables in both the energy and entropy representations.
- Ø The intensive parameters are more easily-measured and, therefore, it is more convenient to be considered as independent variables.
- Ø The Legendre Transformations make it possible.
- Ø The problem is that an equation is given, $Y = Y(X_0, X_1, ..., X_t)$ It is desired to find a method whereby the derivatives $P_k = \frac{\partial Y}{\partial X_k}$ may be considered as independent variables without sacrificing any of mathematical content of the given equation.

- \emptyset Consider a simple case where the fundamental relation is a function of only a single independent variable, Y = Y(X)
- **Ø** It is desired to consider *P*, $P = \partial Y / \partial X$ as an independent variable.
- Ø The practicable solution considers a relation as Y = Y(P), where P is the slope of the line and y is its intercept along the Y-axis.
- Ø This relation is completely equivalent to the given fundamental relation and it may be considered a fundamental relation as well.

Ad. ThermodynamicsLegendre TransformationDr. M. H. SaidiY = Y(X)y = y(P) $P = \frac{dY}{dX}$ $-X = \frac{dy}{dP}$ y = -PX + YY = X P + yElimination of X and Y yieldsElimination of P and Y yieldsY = Y(P)Y = Y(X)

- \emptyset Y = Y(X) is a fundamental relation in *Y*-representation.
- \emptyset y = y(P) is a fundamental relation in *Y*-representation.
- Ø The generalization of the Legendre Transformation to functions of more than a single independent variable is straightforward. It may be applied for a (t+2)-dimensional hyper-surface $Y = Y(X_0, X_1, ..., X_t)$