

#### Sharif University of Technology School of Mechanical Engineering Center of Excellence in Energy Conversion

### **Advanced Thermodynamics**

Lecture 21

Dr. M. H. Saidi

2011



...

Ideal Gas: 
$$\overline{v} = \frac{\overline{R}T}{P}$$
 V.D.W:  $P = \frac{\overline{R}T}{\overline{v} - b} - \frac{a}{\overline{v}^2}$ 

Ø Other form of V.D.W Eq.:

$$Pv = \overline{R}T + \overline{R}T \frac{b-a}{\overline{v}} + \overline{R}T \frac{b^2}{\overline{v}^2} + \overline{R}T \frac{b^3}{\overline{v}^3} + \left(\frac{\partial P}{\partial V}\right)_{T_c} = 0 \text{ and } \left(\frac{\partial^2 P}{\partial V^2}\right)_{T_c} = 0$$
$$\rightarrow v_c = 3bP_c = \frac{a}{27b^2}T_c = \frac{8a}{27Rb}$$
$$Z_c = \frac{P_c v_c}{RT_c} = 0.375$$

It is unreal value, generally  $0.23 < Z_C < 0.33$ 

# Benedict-Webb-Rubin Equation of State

Applicability:

- Above and below critical pressure
- Light hydrocarbons (generally natural gas)
- Single and 2-phase regions

$$p = RT\overline{\rho} + \left(B_0 R_u T - A_0 - C_0 / T^2\right) + \left(bR_u T - a\right)\overline{\rho}^3 + a\alpha\overline{\rho}^6 + \frac{c\overline{\rho}^3}{T^2} \left[\left(1 + \gamma\overline{\rho}^2\right)e^{\left(-\gamma\overline{\rho}^2\right)}\right]$$

$$\overline{\rho} = \text{molar density} = 1/\overline{v} = \rho/M = \frac{1}{\overline{v}M} \left(\frac{\text{lbmol}}{\text{ft}^3}\right)$$

## **B-W-R Constants**

| Substance        | Aa       | Be        | $C_{ m o} 	imes 10^{-6}$ | a        | ь         | $c \times 10^{-6}$ | $\alpha 	imes 10^3$ | $\gamma \times 10^2$ |
|------------------|----------|-----------|--------------------------|----------|-----------|--------------------|---------------------|----------------------|
| Methane          | 6,995.25 | 0.682,401 | 275.763                  | 2,984.12 | 0.867,325 | 498.106            | 511.172             | 153.961              |
| Ethane           | 15,670.7 | 1.005,54  | 2,194.27                 | 20,850.2 | 2.853,93  | 6,413.14           | 1,000.44            | 302.790              |
| Propane          | 25,915.4 | 1.558,84  | 6,209.93                 | 57.248.0 | 5.773,55  | 25,247.8           | 2,495.77            | 564.524              |
| Isobutane        | 38,587.4 | 2.203,29  | 10,384.7                 | 117,047  | 10.889,0  | 55,977.7           | 4,414.96            | 872.447              |
| n-Butane         | 38,029.6 | 1.992,11  | 12,130.5                 | 113,705  | 10.263,6  | 61,925.6           | 4,526.93            | 872.447              |
| Isopentane       | 4,825.36 | 2.563,86  | 21,336.7                 | 226,902  | 17.144.1  | 136,025            | 6,987.77            | 1,188.07             |
| n-Pentane        | 45,928.8 | 2.510.96  | 25,917.2                 | 246,148  | 17.144.1  | 161,306            | 7,439.92            | 1,218.86             |
| n-Hexane         | 5,443.4  | 2.848.35  | 40,556.2                 | 429.901  | 28,003.2  | 296.077            | 11,553.9            | 1,711.15             |
| n-Heptane        | 66,070.6 | 3.187,82  | 57,984.0                 | 626,105  | 38,991,7  | 483,427            | 16,905.6            | 2,309.42             |
| Nitrogen         |          |           |                          |          |           |                    |                     |                      |
| Carbon dioxide   |          |           |                          |          |           |                    |                     |                      |
| Hydrogen sulfide |          |           |                          |          |           |                    |                     |                      |
| Helium           |          |           |                          |          |           |                    |                     |                      |
| Water            |          |           |                          |          |           |                    |                     |                      |
| Hydrogen         |          |           |                          |          |           |                    |                     |                      |
| Ethylene         | 12,593.6 | 0.891,980 | 1,602.28                 | 15,645.5 | 2.206,78  | 4,133.60           | 731.661             | 236.844              |
| Propylene        | 23,049.2 | 1.362,63  | 5,365.97                 | 46,758.6 | 4.799.97  | 20,083.0           | 1,873.12            | 469.325              |

#### Benedict-Webb-Rubin Constants

Units: p=psia, T=°R, molar density=lbmol/ft3

Ø Virial Form:

$$Z = \frac{Pv}{RT} = 1 + \frac{B(T)}{v} + \frac{C(T)}{v^2} + \frac{D(T)}{v^3} + \dots$$



$$Z = \frac{Pv}{RT} = 1 + \frac{B(T)}{v} + \frac{C(T)}{v^2} + \frac{D(T)}{v^3} + \dots$$
  
$$\to v = \frac{RT}{P} + B(T)\frac{RT}{Pv} + C(T)\frac{RT}{Pv^2} + D(T)\frac{RT}{Pv^3} + \dots$$

$$a = \frac{RT}{P} - v$$
  
$$\lim_{P \to 0} a = \lim(\frac{RT}{P} - v) = \lim\left[-B(T)\frac{RT}{Pv} - C(T)\frac{RT}{Pv^2} + \dots\right]$$
  
$$\Rightarrow \lim_{P \to 0} a = -B(T) \to 0 \text{ at } T = T_{Boyle}$$

 $\emptyset$  lim<sub>*P*\to0</sub> *a* is directly related to *B*(*T*) (observed experimentally).

$$\lim_{P \to 0} \left( \frac{\partial Z}{\partial P} \right)_{T_r} = \lim_{P \to 0} \left( \frac{Z - 1}{P - 0} \right) = -\frac{1}{\overline{R}T} \lim_{P \to 0} \left( \overline{v} - \frac{\overline{R}T}{P} \right) = -\frac{1}{\overline{R}T} \lim_{P \to 0} a_{\overline{R}T} \sum_{P \to 0} a$$

**Ad. Thermodynamics** 



$$\boldsymbol{\varnothing} \quad \text{If} \quad Z = \frac{Pv}{RT} = 1 + \frac{B(T)}{v} \qquad \rightarrow \overline{v} = \frac{1 \pm \sqrt{1 + 4B(T)} \frac{P}{\overline{RT}}}{2\frac{P}{\overline{RT}}}$$

 $\boldsymbol{\emptyset}$  We are looking for potential functions which calculate the forces appeared in the equation of state in virial form.

$$B(T) = -2pN_0 \int_0^\infty \left(e^{\frac{-E(r)}{KT}} - 1\right) r^2 dr$$

 $N_0$  = Awoogadro No. and E(r) = Intermolecular Potentyial Function

- $\boldsymbol{\emptyset}$  It is desired to model E(r) to obtain B(T).
- $\emptyset$  It is impossible to integrate the above equation to obtain B(T). However, it is possible to approximate it by a power series.

$$B(T) = b_0 \cdot B^*(T^*)$$
  
$$b_0 = \frac{2}{3} p N_0 s^3, T^* = \frac{T}{e/K},$$

 $B^*(T^*)$  is determined in terms of  $e_K$  and  $b_0$ 



s = The radial position where E(r) takes zero value

- e = A distance denoting the depth of the potential well
- **Ø** The maximum energy of attraction occurs at  $r = 2^{\frac{1}{8}} s$