Sharif University of Technology
 School of Mechanical Engineering
 Center of Excellence in Energy Conversion
 Advanced Thermodynamics

Lecture 16

Dr. M. H. Saidi

2011
\ddot{y} Microstate: Exact specification of the system at microscopic level, it tells us all needed information.
\ddot{y} Microstate can be expanded by degeneracy or quantum states or molecular way.
$\ddot{\mathrm{y}} \quad$ Macrostate: Listing the particles in energy levels for, N_{j}, with

$$
\text { constraints } N=\sum_{j} N_{j} \text { and } U=\sum_{j} N_{j} \varepsilon_{j}
$$

$N=$ No. of particles, $U=$ Energy of the system, and $\varepsilon_{j}=$ Energy level
$\ddot{\mathrm{y}}$ Degeneracy, g_{j}, is a way of describing the number of ways a particle can acquire the same energy level or state.
\ddot{y} Thus, a degenerate state is one in which there is more than one way of obtaining an energy level.
$\ddot{y} \quad$ In a non-degenerate state, there is only one way.
$\ddot{\mathrm{y}} \quad$ Information \& constraints: $\quad N=\sum_{j} N_{j}$ and $U=\sum_{j} N_{j} \varepsilon_{j}$
\ddot{y} Consider a system with two independent particles and three energy levels $, \varepsilon_{0}, \varepsilon_{1}$, and ε_{2} with $\quad N=2$ and $U=2$
\ddot{y} For $g_{j}=0$:
$\ddot{\mathrm{y}} \quad$ Macro I: $\quad N_{0}=1, N_{1}=0$, and $N_{2}=1$
$\ddot{\mathrm{y}} \quad$ Macro II: $\quad N_{0}=0, N_{1}=2$, and $N_{2}=0$
$\ddot{y} \quad$ For $g_{j}=1$:

\[

\]

\ddot{y} Degeneracy of a system with only translational kinetic energy:
$\ddot{y} \quad C$ is the number of the translational kinetic energy.

$$
g=\frac{(c+2)(c+1)}{2}
$$

y \quad Statistical models
\ddot{y} Classical mechanics: particles are distinguishable, no limit for No. of particles per quantum state, Boltzmann-Model
$\ddot{y} \quad$ Quantum mechanics: particles are indistinguishable
ÿ Maximum 1 per quantum state, Paoli (Fermi-Dirac)
$\ddot{y} \quad$ No limit, Bose-Einstain

$$
\begin{aligned}
& \omega=\text { Thermodynamic Probability } \\
& \omega_{\text {Bol. }}=N!\prod_{j}\left[\frac{g_{j}^{N_{j}}}{N_{j}!}\right] \\
& \omega_{B . E .}=\prod_{j}\left[\frac{\left(g_{j}+N_{j}-1\right)!}{\left(g_{j}-1\right)!N_{j}!}\right] \\
& \omega_{F . D .}=\prod_{j}\left[\frac{g_{j}!}{\left(g_{j}-N_{j}\right)!N_{j}!}\right] \\
& \omega_{\text {Corrected Boltzmann }}=\frac{\omega_{\text {Boltzmann }}}{N!}=\prod_{j}\left[\frac{g_{j}^{N_{j}}}{N_{j}!}\right]
\end{aligned}
$$

ÿ Note!
In reals ystems $N_{j} \ll g_{j}$

