


Sharif University of Technology School of Mechanical Engineering Center of Excellence in Energy Conversion

Advanced Thermodynamics

Lecture 12

Dr. M. H. Saidi

2011

Thermodynamic analysis Ø

$$\frac{dm_{C.V.}}{dt} = \sum_{in} n\& - \sum_{out} n\& \Rightarrow \Delta_{1-2} m_{C.V.} = \sum_{t=1}^{t} n\&_{in} dt - \sum_{t=1}^{t} n\&_{out} dt$$
Energy Eq. (Heat balance) or 1st law $(h^* = h + \frac{v^2}{2} + gz)$

Ø

$$\frac{dE_{CV}}{dt} = \sum_{i=0}^{n} Q_{i}^{k} - W_{CV}^{k} + \sum_{in} n^{k}h^{*} - \sum_{out} n^{k}h^{*} \text{ Eq. (1)}$$

Ø Entropy principle (2nd law)

$$\frac{dS_{CV}}{dt} = \sum_{i=0}^{n} \frac{Q_{i}^{k}}{T_{i}} + \sum_{in} n kS - \sum_{out} n kS + S_{gen}^{k} \text{ Eq. (2)}$$

- From Eq. (1) $Q_0^{-1} = \frac{dE_{CV}}{dt} + \sum_{i=1}^{n} Q_i^{-1} W_{CV}^{-1} + \sum_{i=1}^{n} n h^{-1} \sum_{out} n h^{-1} h^{-1}$
- From Eq. (2)

$$Q_0^{\mathbf{k}} = T_0 \frac{dS_{CV}}{dt} - T_0 \sum_{i=0}^{n} \frac{Q_i^{\mathbf{k}}}{T_i} - T_0 \sum_{in} n \mathbf{k} S + T_0 \sum_{out} n \mathbf{k} S - T_0 S_{gen}^{\mathbf{k}}$$

$$\Rightarrow \frac{dE_{CV}}{dt} + P_0 \frac{dV}{dt} - T_0 \frac{dS_{CV}}{dt} = \sum_{i=1}^{n} \left(1 - \frac{T_0}{T} \right) \mathcal{E}_i^{\mathbf{k}} - \left(W_{CV}^{\mathbf{k}} - P_0 \frac{dV}{dt} \right) + \sum_{in} n \mathcal{E}(h^* - T_0 S) - \sum_{out} n \mathcal{E}(h^* - T_0 S) - T_0 \mathcal{E}_{gen}^{\mathbf{k}}$$

Since and are considered constant Ø

$$\frac{d}{dt} \left[E_{CV} + P_0 dV - T_0 S_{CV} \right] = \frac{d \left(Exergy \right)}{dt} = \frac{d \left(A \text{ vailability} \right)}{dt} = \frac{d y}{dt}$$

$$\frac{dy}{dt} = \sum_{i=1}^{n} \left(1 - \frac{T_0}{T} \right) Q_i^{\mathbf{x}} - \left(W_{C.V.}^{\mathbf{x}} - P_0 \frac{dV}{dt} \right) + \sum_{in} n \mathbf{x} b - \sum_{out} n \mathbf{x} b - T_0 S_{gen}^{\mathbf{x}}$$

- Where $b = (h^* T_0 S)$
- *I*: Rate of change of exergy (availability) of C.V. with the time.
- *II*: Exergy transferred into C.V. with heat, note that Ø
- *III*: Rate of available work produced by the C.V.
- IV: Net availability convected into the C.V. with mass flow, also called physical exergy.
- Ø V: Exergy destruction due to internal irreversibility.

$$\frac{dy}{dt} = \sum_{i=1}^{n} \left(1 - \frac{T_0}{T} \right) Q_i^{k} - \left(W_{C.V.}^{k} - P_0 \frac{dV}{dt} \right) + \sum_{in} n b - \sum_{iv} n b - T_0 S_{gen}^{k}$$

Observations:

- Exergy is simply a combination of the 1st and 2nd laws.
- exergy (availability) is completely rigrous, there are assumptions in deriving its statement.