INTRODUCIION TO ROBOTICS (Kinematics, Dynamics, and Design)

SESSION \# 8:

SPATLAL DESCRIPTIONS

\& TRANSFORMATIONS Ali Meghdari, Professor

School of Mechanical Engineering Sharif University of Technology Tehran, IRAN 11365-9567
Homepage: http://meghdari.sharif.edu

Spatial Descriptions

- Reference Frame
- A Cartesian coordinate system with 3 orthogonal axes
- Frames may be specified with respect to other frames
- Spherical and cylindrical systems can also be used - we will use Cartesian coordinate systems.

Degrees of Freedom

How many degrees of freedom does a "point" has in 3 space?

Three: can move in x, y, and z directions.

How many degrees of freedom does a 3D Object has in 3 space?

Six: can move in x, y, z directions and rotate around those axes.

© Sharif University of Technology - CEDRA

Points

- Position

- Can be specified in 3 space by a $3 x 1$ position vector
- The vector is specified with respect to some reference frame
- Unit vectors are vectors of length/magnitude 1
- In this presentation i, j, and k are unit vectors oriented along the x, y and z axes respectively

Understood to be a vector defined as

$$
\mathrm{Xi}+\mathrm{Yj}+\mathrm{Zk}
$$

© Sharif University of Technology - CEDRA

Spatial Descriptions and Transformations

- Description of a Point:

Position Vector

Position of Point B in Frame \{A\}:

$$
P=\left[P_{x} P_{y} P_{z}\right]^{T}
$$

\{Reference Coordinate System\}
© Sharif University of Technology - CEDRA

Spatial Descriptions and Transformations

- Description of an

Orientation (جه)
Attach a coordinate frame to the body, then
$>$ Describe this frame relative to the reference coordinate system.

© Sharif University of Technology - CEDRA

Spatial Descriptions and Transformations

- Express Unit Vectors of $\{B\}$ in terms of the $\{\mathrm{A}\}$ system.

Unit Vectors of frame $\{B\}$:

$$
\hat{X}_{B}, \hat{Y}_{B}, \hat{Z}_{B}
$$

$>$ Unit Vectors of frame $\{B\}$ expressed relative to $\{\mathbf{A}\}$:

$$
{ }^{A} \hat{X}_{B},{ }^{A} \hat{Y}_{B},{ }^{A} \hat{Z}_{B}
$$

(each having 3-components)

Spatial Descriptions and Transformations

- Compose a Rotation Matrix expressing orientation of the frame $\{\mathrm{B}\}$ relative to $\{\mathrm{A}\}$.

$$
\left[{ }^{A} \hat{X}_{B},{ }^{A} \hat{Y}_{B},{ }^{A} \hat{Z}_{B}\right]=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]={ }_{B}^{A} R
$$

All columns have unit magnitude, Dot-Product of any two columns is zer
Hence, Rotation Matrix is Orthogonal.

Spatial Descriptions and Transformations

- Description of a Frame (Position \& Orientation)

To completely specify a Rigid Body's location in space, we need to specify both position \& orientation.

Choose the origin of the body-attached frame to describe rigid body's position.
$\{B\}=\left\{{ }_{B}^{A} R_{(3 \times 3)},{ }^{A} P_{B O R G(3 \times 1)}\right\}$
Frame $\{\mathrm{A}\}$
\{Reference Coordinate System \}
${ }^{A} P_{B O R G}:$ Position of origin of $\{\mathbf{B}\}$ with respect to $\{\mathbf{A}\}$

Spatial Descriptions and Transformations

- Description of a Position (مكان)

$$
\{B\}=\left[\begin{array}{cccc}
1 & 0 & 0 & P_{x} \\
0 & 1 & 0 & P_{y} \\
0 & 0 & 1 & P_{z}
\end{array}\right]=\left[I_{(3 \times 3)},{ }^{A} P_{B O R G}\right]
$$

Description of an Orientation (جه)

$$
\left.\{B\}=\left[\begin{array}{llll}
r_{11} & r_{12} & r_{13} & 0 \\
r_{21} & r_{22} & r_{23} & 0 \\
r_{31} & r_{32} & r_{33} & 0
\end{array}\right]=\left[{ }_{B}^{A} \text { R, Zero-Vector }\right]\right]
$$

Spatial Descriptions and Transformations

- Mapping (Changing Relativity) (نگاشت- تنغيرننسبيت):

Translated Frames: (frames \{A\} \& $\{B\}$ having the same orientation)

Given: ${ }^{B} P$, Find: ${ }^{A} P$

$$
{ }^{A} P={ }^{B} P+{ }^{A} P_{B O R G}
$$

$$
{ }^{A} P_{B O R G}: \text { Translation Vector (بردار انتقال) X } \underset{\{\text { Reference Coordinate System\}}}{ } \quad\{\mathrm{A}\}
$$

Spatial Descriptions and Transformations

- Mapping (Changing Relativity)

Rotated Frames:
Given: ${ }^{B} \mathbf{P}$, Find: ${ }^{A} P$
${ }_{B}^{A} R=\left[{ }^{A} \hat{X}_{B}{ }^{A} \hat{Y}_{B}{ }^{A} \hat{Z}_{B}\right] \equiv$ Orthogonal $\Rightarrow{ }_{B}^{A} R={ }_{A}^{B} R^{-1}={ }_{A}^{B} R^{T}$
Columns of ${ }_{B}^{A} R$ are the unit vectors of $\{\mathrm{B}\}$ written
in $\{\mathrm{A}\}$ frame.
Rows of ${ }_{B}^{A} R$ are the unit vectors of $\{\mathrm{A}\}$ written in
 $\{B\}$ frame.

$$
{ }^{A} P={ }_{B}^{A} R^{B} P
$$

Frames inside of Frames

- How to represent a frame with respect to another frame when the origins are coincident?
- Frames represented by 3 orthogonal unit vectors
- Sometimes known as normal, orientation, and approach
- Each represented with respect to the reference frame

$$
R=\left[\begin{array}{ccc}
n_{x} & o_{x} & a_{x} \\
n_{y} & o_{y} & a_{y} \\
n_{z} & o_{z} & a_{z}
\end{array}\right]
$$

Dot Product

Let \mathbf{x} and \mathbf{y} be arbitrary vectors in 3-space and let theta be the angle between them.

$$
x \cdot y=|x||y| \cos \theta
$$

Orthogonality requires that

Unit vectors means that

$$
\begin{array}{ll}
\vec{n} \cdot \vec{o}=0 & |\vec{n}|=1 \\
\vec{n} \cdot \vec{a}=0 & |\vec{o}|=1 \\
\vec{o} \cdot \vec{a}=0 & |\vec{a}|=1
\end{array}
$$

Spatial Descriptions and Transformations

- Example:

Given: ${ }^{\text {B }} \mathbf{P}$, Find: ${ }^{A} \mathbf{P}$

Spatial Descriptions and Transformations

- Mapping (Changing Relativity)

Translated \& Rotated Frames: Given: ${ }^{3} \mathbf{P}$, Find: ${ }^{A} \mathbf{P}$

1. Express ${ }^{B} \mathbf{P}$ with respect to a frame with the same orientation as $\{A\}$, but with origin at $\{B\}$,
2. Translation done by vector addition.

$$
{ }^{A} P={ }_{B}^{A} R^{B} P+{ }^{A} P_{B O R G}
$$

\{Reference Coordinate System\}

Note: You can only add two vectors when they are expressed in frames with the same orientation.

Spatial Descriptions and Transformations

- Define a Transformation Operator to express mapping in a cleaner form:

$$
\left[\begin{array}{c}
{ }^{A} P \\
\hdashline 1
\end{array}\right]=\left[\begin{array}{c:c}
{ }_{B}^{A} R_{(3 \times 3)} & { }^{A} P_{B O R G(3 \times 1)} \\
\hdashline 0_{(1 \times 3)} & 1
\end{array}\right]\left[\begin{array}{c}
{ }^{B} P \\
\hdashline 1
\end{array}\right] \Rightarrow{ }^{A} P={ }_{B}^{A} T^{B} P
$$

> ${ }_{B}^{A} T$: Homogeneous Transformation Matrix Expressing Position and Orientation of frame $\{B\}$ relative to frame $\{A\}$.

Transformations?

- Transformations are a way of describing spatial movements/locations
- Transformations are represented as a frame!
- Transformations may be "pure"
- rotation about a single axis
- translation
- Transformations may be a combination of rotation(s) and translation(s)

Position Vector

- A vector that doesn't begin at the origin can be specified by the difference between two points A and B

$$
P=\left(B_{x}-A x\right) i+\left(B_{y}-A_{y}\right) j+\left(B_{z}-A_{z}\right) k
$$

- A position can also be represented as a 4×1 vector where the $4^{\text {th }}$ number represents a scaling factor

$$
P=\left[\begin{array}{llll}
x & y & z & w
\end{array}\right]^{-1}
$$

- which is equivalent to $[\mathrm{x} / \mathrm{w}, \mathrm{y} / \mathrm{w}, \mathrm{z} / \mathrm{w}]^{-1}$

Vector Example

A vector P is given as $3 x+5 y+2 z$. Express the vector as:

1) As a vector with scale factor 2

$$
P=\left[\begin{array}{llll}
6 & 10 & 4 & 2
\end{array}\right]^{-1}
$$

2) As a directional vector
3) As a unit vector

$$
P=\left[\begin{array}{llll}
.48 & .811 & .324 & 1
\end{array}\right]^{-1}
$$

4) As a directional unit vector

$$
\mathrm{P}=\left[\begin{array}{llll}
.48 & .811 & .324 & 0
\end{array}\right]^{-1}
$$

Spatial Descriptions and Transformations

- Example:

Given: ${ }^{B} \mathbf{P}$, Find: ${ }^{A} \mathbf{P}$

Spatial Descriptions and Transformations

- Operators: Translations, Rotations, Transformations Translation Operator: (انتقال 1 (ا جمع دو بر دار)

$$
\operatorname{Trans}(Q) \equiv \operatorname{Trans}\left(q_{x}, q_{y}, q_{z}\right) \equiv\left[\begin{array}{cccc}
1 & 0 & 0 & q_{x} \\
0 & 1 & 0 & q_{y} \\
0 & 0 & 1 & q_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Given a vector $\mathrm{U}=[\mathrm{x}, \mathrm{y}, \mathrm{z}, 1]^{\mathrm{T}}$ and $\operatorname{Trans}(\mathrm{Q})$, we have:

$$
V=\operatorname{Trans}(Q) U=\left[\begin{array}{c}
x+q_{x} \\
y+q_{y} \\
z+q_{z} \\
1
\end{array}\right]
$$

Example: Translation

- Translation along the z-axis through h

Spatial Descriptions and Transformations

- Operators: Translations, Rotations, Transformations Rotation Operator: (دوران يك بردار)

Rotation Matrix/operator is used to operate on a vector ${ }^{A} P_{1}$ and changes that vector to a new vector, ${ }^{A} P_{2}$, by means of a rotation $\operatorname{Rot}(\theta)$.

$\operatorname{Rot}(x, \theta)$	$=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \operatorname{Cos} \theta & -\operatorname{Sin} \theta & 0 \\ 0 & \operatorname{Sin} \theta & \operatorname{Cos} \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \quad, \operatorname{Rot}(y, \theta)=\left[\begin{array}{cccc}\operatorname{Cos} \theta & 0 & \operatorname{Sin} \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\operatorname{Sin} \theta & 0 & \operatorname{Cos} \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
$\operatorname{Rot}(z, \theta)$	$=\left[\begin{array}{cccc}\operatorname{Cos} \theta & -\operatorname{Sin} \theta & 0 & 0 \\ \operatorname{Sin} \theta & \operatorname{Cos} \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Example: Rotation

* Rotation about the x-axis through θ

$$
\operatorname{Rot}(x, \theta)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]
$$

Example: Rotation

- Rotation about the y-axis through θ

Spatial Descriptions and Transformations

- Operators: Translations, Rotations, Transformations Transformation Operator: (إپر اتور تبّ يل)
A combination of both Translation and Rotation Operators.

Given: ${ }^{\text {A }} \mathbf{P}_{1}$, Rotate it about
$\mathbf{Z}_{\mathbf{A}}$-axis by $\mathbf{3 0}^{\boldsymbol{0}}$, Translate 3",
along $\mathbf{X}_{\mathbf{A}}$ and 5" along \mathbf{Y}_{A}

Find: ${ }^{A} P_{1}=\left[\begin{array}{l}5 \\
2 \\
0\end{array}\right] \quad, \quad T=\left[\begin{array}{cccc}0.866 & -0.5 & 0 & 3 \\
0.5 & 0.866 & 0 & 5 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1\end{array}\right]$

Chapter 2 Exercises:

- 2.1, 2.3, 2.4, 2.5, 2.11, 2.12, 2.13, 2.16, 2.32, 2.35
- 2.1 Programming Exercise (program Atan2 function)
- 2A MathLab Exercise

