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Spatial Descriptions

• Reference Frame

– A Cartesian coordinate system with 3 orthogonal axes

– Frames may be specified with respect to other frames

– Spherical and cylindrical systems can also be used – we will 
use Cartesian coordinate systems.
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Degrees of Freedom

How many degrees of freedom does a “point” has in 3 space?

Three: can move in x, y, and z directions.

How many degrees of freedom does a 3D Object has in 3 space?

Six: can move in x, y, z directions and rotate around those axes.
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Points

• Position
– Can be specified in 3 space by a 3x1 position vector

– The vector is specified with respect to some reference frame

– Unit vectors are vectors of length/magnitude 1

– In this presentation i, j, and k are unit vectors oriented along the x, y and z axes 

respectively
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Spatial Descriptions and Transformations

• Description of a Point:

APB =[Px Py Pz]
T

 Position of Point B in Frame {A}:
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Spatial Descriptions and Transformations

• Description of an
Orientation (جهت)

Attach a coordinate frame 
to the body, then

Describe this frame relative 
to the reference coordinate 
system.
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Spatial Descriptions and Transformations

• Express Unit Vectors of {B} 

in terms of the {A} system.

Unit Vectors of frame {B}:

Unit Vectors of frame {B} 

expressed relative to {A}:

(each having 3-components)
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Spatial Descriptions and Transformations

• Compose a Rotation Matrix

expressing orientation of the frame 

{B} relative to  {A}.

 All columns have unit magnitude,

 Dot-Product of any two columns is zero,

 Hence, Rotation Matrix is Orthogonal.
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Spatial Descriptions and Transformations

• Description of a Frame (Position & 

Orientation)

 To completely specify a Rigid Body’s 

location in space, we need to specify both 

position & orientation.

 Choose the origin of the body-attached 

frame to describe rigid body’s position.
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Spatial Descriptions and Transformations

• Description of a Position (مكان)

• Description of an Orientation (جهت)
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Spatial Descriptions and Transformations

• Mapping (Changing Relativity) 

(تغييرنسبيت -نگاشت ):

Translated Frames: (frames {A} & 

{B} having the same orientation)

Given: BP,  Find: AP
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AP : Translation Vector (بردار انتقال)

Note: You can only add two vectors when they are expressed in frames with the same orientation.
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Spatial Descriptions and Transformations

• Mapping (Changing Relativity) 

(تغييرنسبيت -نگاشت ):

Rotated Frames:

Given: BP,  Find: AP
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Columns of        are the unit vectors of {B} written 

in {A} frame.

Rows of       are the unit vectors of {A} written in 
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Frames inside of Frames

• How to represent a frame with respect to another frame when 
the origins are coincident?

– Frames represented by 3 orthogonal unit vectors

– Sometimes known as normal, orientation, and approach

– Each represented with respect to the reference frame
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Dot Product
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Let x and y be arbitrary vectors in 3-space and let theta be the 

angle between them.
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Orthogonality requires that Unit vectors means that



© Sharif University of Technology - CEDRA

Spatial Descriptions and Transformations

• Example: 

Given: BP,  Find: AP
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Spatial Descriptions and Transformations

• Mapping (Changing Relativity) 
(تغييرنسبيت -نگاشت ):

 Translated & Rotated Frames: 

Given: BP,  Find: AP

1. Express BP with respect to a frame 
with the same orientation as {A}, but 
with origin at {B},

2. Translation done by vector addition. 
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Note: You can only add two vectors when they are expressed in frames with the same orientation.
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Spatial Descriptions and Transformations

• Define a Transformation Operator to 

express mapping in a cleaner form:
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: Homogeneous Transformation Matrix Expressing Position

and Orientation of frame {B} relative to frame {A}.
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Transformations?

• Transformations are a way of describing 

spatial movements/locations

– Transformations are represented as a frame!

– Transformations may be “pure”

• rotation about a single axis

• translation

– Transformations may be a combination of 

rotation(s) and translation(s)



© Sharif University of Technology - CEDRA

Position Vector

• A vector that doesn’t begin at the origin can be specified 
by the difference between two points A and B

P = (Bx–Ax)i + (By-Ay)j + (Bz-Az)k

• A position can also be represented as a 4x1 vector 
where the 4th number represents a scaling factor

P = [x y z w]-1

• which is equivalent to [x/w, y/w, z/w]-1
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Vector Example

A vector P is given as 3x + 5y + 2z.  Express the vector as: 

1) As a vector with scale factor 2

2) As a directional vector

3) As a unit vector

4) As a directional unit vector

P = [6 10 4 2]-1

P = [3 5 2 0]-1

P = [.48 .811 .324 1]-1

P = [.48 .811 .324 0]-1
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Spatial Descriptions and Transformations

• Example:

Given: BP,  Find: AP
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Spatial Descriptions and Transformations

• Operators: Translations, Rotations, Transformations

Translation Operator:    ()

Given a vector U=[x,y,z,1]T and Trans(Q), we have:
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Example: Translation

– Translation along the z-axis through h
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Spatial Descriptions and Transformations

• Operators: Translations, Rotations, Transformations

Rotation Operator:    ()

Rotation Matrix/operator is used to operate on a vector AP1 and changes 

that vector to a new vector, AP2 , by means of a rotation Rot().
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Example: Rotation
– Rotation about the x-axis through 
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Example: Rotation

• Rotation about the y-axis 

through 

y

z

x



z'
x'

 

























1000

0cos0sin

0010

0sin0cos

,yRot

• Rotation about the z-axis 

through 

 

























1000

0100

00cossin

00sincos

,zRot

y

z

x



y'

x'



© Sharif University of Technology - CEDRA

Spatial Descriptions and Transformations

• Operators: Translations, Rotations, Transformations

Transformation Operator:    ()
A combination of both Translation and Rotation Operators.

Given: AP1,  Rotate it about

ZA-axis by 300, Translate 3”

along XA and 5” along YA

Find: AP2=?
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Chapter 2 Exercises:

• 2.1, 2.3, 2.4, 2.5, 2.11, 2.12, 2.13, 2.16, 

2.32, 2.35

• 2.1 Programming Exercise (program 

Atan2 function)

• 2A MathLab Exercise


