

INTRODUCTION TO ROBOTICS (Kinematics, Dynamics, and Design) SESSION # 6: GEOMETRICAL CONFIGURATIONS

Ali Meghdari, Professor School of Mechanical Engineering Sharif University of Technology Tehran, IRAN 11365-9567 Homepage: http://meghdari.sharif.edu

Cartesian/Rectangular (**PPP**) Robots (i.e. IBM-7565)

Advantages:

- ➢ High resolution and accuracy.
- ➢ No counterbalance problem.

Disadvantages:

- Large structural framework.
- Complex mechanical design for linear sliding motions.
- Confinement of the workspace (limited).

Cylindrical Robots (**RPP**) (i.e. Zymark Robot)

Advantages:

- Almost no counterbalance problem.
- Mechanical design is less complex than Cartesian robots.

Disadvantages:

- Large structural framework.
- Lower accuracy compared with the Cartesian robots.
- Restriction of the workspace.

Spherical/Polar Robots (**RRP**) (i.e. Unimation-2000B)

Advantages:

- Low weight and minimal structural complexity.
- Short joint travel for many motions.
- ➢ Good accuracy and resolution.

Disadvantages:

- Large variable torque on second joint creating counterbalance problem.
- Position error is large due to rotary joints.

STÄUBLI

Revolute/Articulated Robots (i.e. PUMA-500/600/250)

Advantages:

- Flexibility to reach over or under an object.
- Good workspace.

Disadvantages:

- Counterbalance problem.
- Poor resolution and accuracy due to rotary joints.
- High moment of inertia, and dynamic instability (i.e. vibrations).

Revolute/Articulated Robots

SCARA
Intelledix

Advantages:

- Flexibility to reach over or under an object.
- Good workspace.

Disadvantages:

- Counterbalance problem.
- Poor resolution and accuracy due to rotary joints.
- High moment of inertia, and dynamic instability (i.e. vibrations).

© Sharif University of Technology - CEDRA

(2)

Snakelike/Tensor-Arm Robots (i.e. Anderson & Horn Arm 1970)

Advantages:

- Flexibility to take any shape in 3-Dim. space.
- Great workspace.
- Ability to pass through a restricted passage or canal.

Disadvantages:

- Direct drive arm.
- > Low payload.
- Complex dynamics and control.

Parallel Manipulators (i.e. Stewart Platform with 6-DOF)

Advantages:

- Flexibility to take any shape in 3-Dim. space.
- Great workspace.
- Higher payload due to the increased stiffness for being a closed-loop structure.

Disadvantages:

Complex dynamics and control.

Dual-Arm Cam-Lock Robots (i.e. Meghdari-Arm 1993)

Advantages:

- Flexibility to take many shapes in 3-Dim. space.
- Great reachable workspace that can be readily extended.
- Variable Geometry Variable Stiffness Arm.
- Can be placed in compact/portable form.

Disadvantages:

- > Direct drive arm.
- Low payload.
- Complex dynamics and control.

Mobile Robots and Manipulators (AGV: Autonomous Guided Vehicles)

Advantages:

- Extended workspace.
- > Applicable to various environments.

Disadvantages:

- Complex mechanical design.
- Complex dynamics and control.

Configuration

- A *configuration* of the manipulator is a complete specification of the location of every point on the manipulator.
- If you know the values for the **joint variable** (*joint angle for revolute joints or joint offset for prismatic joints*), it is straightforward to infer the position of any point on the manipulator.
- A configuration is represented by a set of values for the joint variable

Mobile Manipulators

The Brachiation Robots

Robot Brachiation (Modified)

The Modular Self-Reconfigurable Robots

Walking/Climbing Robots

(Robotic Insects, etc.)

Advantages:

- Extended workspace.
- > Applicable for various tracks.

Disadvantages:

- Complex mechanical design.
- Complex dynamics and control.

The Harvard Microrobotic Fly

- Goal: create a robotic insect capable of sustained autonomous flight
- Key Specs.: 3cm wingspan, 60mg, 2 wings

ES159/259

Design and Fabrication of a System of Modular Robotic Grippers

مجرى طرح

دکتر علی مقداری، دانشیار دانشکده مهندسی مکانیک – دانشگاه صنعتی شریف

Principal Investigator : Prof. Ali Meghdari, Sharif University of Technology, School of Mechanical Engineering, Tehran, IRAN

The Animated Robotic Work Station

Animated Models of Robotic Grippers

Animated Model of AMRC Quick Change System

Part of Quick Change System attached to robot.

Part of Quick Change System attached to gripper.

Advanced Manufacturing Research Center

Mechanics of Mechanical Manipulators

- To describe the **Position** and **Orientation** of a body in space:
- Rigidly attach a coordinate system (frame {x, y, z}) to the object, then
- Describe the Pos. & Orien. of this frame with respect to a reference frame {X, Y, Z}

Ζ

object

Basic Elements of Manipulator Arms

Manipulators consist of:

- Links (nearly rigid), and
- Joints:
 - Revolute (Displacement = Joint Angle)
 - Prismatic/Sliding (Translation = Joint Offset)

Rotation

Revolute

prismatic

Translation

Rotation

The Six Possible Lower-Pair Joints

Degrees-of-Freedom (Mobility) of a Robot

- An object is said to have "n" degrees of freedom (DOF), if its configuration can be minimally specified by "n" parameters.
- For a robot manipulator, the number of joints determine the number of DOF.
- To reach any point in the space with an arbitrary orientation: 6 DOF (3 DOF for positioning and 3 DOF for orientation)

Degrees-of-Freedom (Mobility) of a Robot

- Less than 6 DOF: the arm cant reach any point in the space with an arbitrary orientation.
- More than 6 DOF: Kinematically Redundant Manipulator. A redundant joint is one that is unnecessary because other joints provide the needed position and/or orientation.
- Certain applications may require more than 6-DOF, for example:

Obstacle Avoidance.

Degrees-of-Freedom (Mobility) of a Robot

The number of input parameters (i.e. joint variables) which must be independently controlled in order to bring the robotic arm into a particular position/orientation.

- In open kinematics chains (i.e. Industrial Manipulators):
 - {# of D.O.F. = # of Joints}
 - 3R = An Arm with 3 successive Revolute Joints.
 - 3P = An Arm with 3 successive Sliding/Prismatic Joints.

A 3-DOF Manipulator Arm

Kinematics chain

Mechanisms can be configured as kinematics chains. The chain is closed when the ground link begins and ends the chain; otherwise, it is open.

Simple Examples

A one degree-of-freedom closed-loop mechanism A three degree-of-freedom open-loop mechanism

Serial Robot Types

- Serial robots can be classified as revolute, spherical, cylindrical, or rectangular (translational, prismatic, or Cartesian).
- These classifications describe the primary DOF (degrees-offreedom) which accomplish the global motion as opposed to the distal (final) joints that accomplish the local orientation.

Cylindrical¶

Spherical¶

Rectangular¶

Closed Loop Robot Types

Closed loop robots/mechanisms like: Stewart Platform/Parallel Robots, and Multiple-Loop Mechanism/Robots).

Dashed lines represent same S-P-S joint combination as shown: S = spherical joint; P = prismatic joint) j = 8; n = 7L = 8 - 7 + 1 = 2

