INTRODUCTION TO ROBOTICS
 (Kinematics, Dynamics, and Design)

SESSION \# 16:

MANIPULATOR DYNAMICS

Ali Meghdari, Professor

School of Mechanical Engineering Sharif University of Technology Tehran, IRAN 11365-9567

Homepage: http://meghdari.sharif.edu

Manipulator Dynamics

$>$ So far we have only studied motion of manipulators without regard to forces causing the motion.
> Let us now derive the equations of motion for manipulator arms. In dynamics, we generally consider the following issues:

* Forward Dynamics: Computing the resulting motion of the manipulator arm ($\overline{\theta, \dot{\theta}, \vec{\theta}})$ under the application of a set joint torques (τ). This is useful for simulation of the arm.

Inverse Dynamics: Computing the vector of joint torques (τ) for the given joint motion trajectory ($\hat{\theta, \dot{\theta}, \dot{\theta})}$) This is useful for controlling of the arm.

Manipulator Dynamics

Manipulator Dynamics

Author	Method	Multiplications	Additions
Uicker/Kahn (Lagrangian Dyn.)	(4×4) Matrices	$\mathbf{6 6 , 2 7 1}$	$\mathbf{5 1 , 5 4 8}$
Waters (Lagrangian Dyn.)	(4 $\times 4$) Backward Recursion	$\mathbf{7 , 0 5 1}$	$\mathbf{5 , 6 5 2}$
Hollerbach (Lagrangian Dyn.)	(4×4) Forward Recursion	$\mathbf{4 , 3 8 8}$	$\mathbf{3 , 5 8 6}$
Hollerbach (Lagrangian Dyn.)	(3 $\times 3$) Forward Recursion	$\mathbf{2 , 1 9 5}$	$\mathbf{1 , 7 1 9}$
Newton-Euler	Recursive	$\mathbf{8 5 2}$	$\mathbf{7 3 8}$
Kane/Levinson	Kane Dynamics	$\mathbf{6 4 6}$	$\mathbf{3 9 4}$
Raibert/Horn	Configuration Space Method (CSM)	$\mathbf{4 6 8}$	$\mathbf{2 6 4}$
Yang/Tzeng	Dyn. Simplification by Design	$\mathbf{7 2}$	$\mathbf{3 4}$ + 4 Trig.

Manipulator Dynamics

> Linear Accelerations of Rigid Bodies:
Consider a point " Q " in space, and describe its kinematics in two frames $\{A\}$ and $\{B\}$.

From Chapter-5 we have:

$$
\begin{aligned}
& { }^{A} Q \equiv{ }^{A} Q_{B O R G}+{ }_{B}^{A} R^{B} Q \\
& { }^{A} V_{Q}={ }^{A} V_{B O R G}+{ }^{A} \Omega_{B} \times{ }_{B}^{A} R^{B} Q+{ }_{B}^{A} R^{B} V_{Q}
\end{aligned}
$$

Differentiating the velocity equation with respect to the time we have:

Manipulator Dynamics

- Linear Accelerations of Rigid Bodies:

Noting that: ${ }_{B}^{A} \dot{R} \equiv{ }^{A} \Omega_{B} \times{ }_{B}^{A} R$

$$
\begin{array}{r}
{ }^{A} \dot{V}_{Q}={ }^{A} \dot{V}_{\text {BORG }}+{ }_{B}^{A} R^{B} \dot{V}_{Q}+2^{A} \Omega_{B} \times{ }_{B}^{A} R^{B} V_{Q}+ \\
+{ }^{A} \dot{\Omega}_{B} \times{ }_{B}^{A} R^{B} Q+{ }^{A} \Omega_{B} \times\left({ }^{A} \Omega_{B} \times{ }_{B}^{A} R^{B} Q\right)
\end{array}
$$

If ${ }^{\boldsymbol{B}} Q$ is constant (on the R.B.), then: ${ }^{B} V_{Q}={ }^{B} \dot{V}_{Q}=0$

$$
{ }^{A} \dot{V}_{Q}={ }^{A} \dot{V}_{B O R G}+{ }^{A} \dot{\Omega}_{B} \times{ }_{B}^{A} R^{B} Q+{ }^{A} \Omega_{B} \times\left({ }^{A} \Omega_{B} \times{ }_{B}^{A} R^{B} Q\right)
$$

Manipulator Dynamics

$>$ Angular Acceleration of Rigid Bodies:

Consider:

- Frame $\{B\}$ rotating relative to $\{A\}$ with: $A \Omega_{B}$
- Frames $\{C\}$ rotating relative to $\{B\}$ with: ${ }^{B} \Omega_{C}$

Then:

$$
{ }^{A} \Omega_{C} \equiv{ }^{A} \Omega_{B}+{ }_{B}^{A} R^{B} \Omega_{C} \quad \text { Sum the vectors in frame }\{\mathrm{A}\}
$$

$$
{ }^{A} \dot{\Omega}_{C}={ }^{A} \dot{\Omega}_{B}+{ }_{B}^{A} R^{B} \dot{\Omega}_{C}+{ }^{A} \Omega_{B} \times{ }_{B}^{A} R^{B} \Omega_{C}
$$

Manipulator Dynamics

$>$ Newtonian Mechanics:

For a Rigid Body whose center of mass is accelerating with " a_{C} ", the Force " F " acting at the mass center is given by:

The Newton's Law of Motion:

$$
F=\sum f_{i}=\dot{P}=m \dot{v}_{C}=m a_{C}=(\text { Time rate of change of momentum })
$$

© Sharif University of Technology - CEDRA

Manipulator Dynamics

> Newtonian Mechanics:

For a Rigid Body rotating with an angular velocity " ω ", and an angular accelerating " α ", the Moment " N " which must be acting on the body to cause this motion, is given by:

The Euler's Equation:

$$
N={ }^{C} I \cdot \alpha+\omega \times\left({ }^{C} I \cdot \omega\right)
$$

(The rotational analogy of the Newton's $2^{\text {nd }}$ law comes from the Principle of Moment of Momentum)
where:
${ }^{\mathbf{C}} \mathbf{I}=$ Inertia Tensor of the R.B. written in frame $\{\mathbf{C}\}$

Manipulator Dynamics

> Mass Distribution: The Inertia Tensor of an object describes the object's mass distribution (a generalization of the scalar moment of inertia). Relative to a frame $\{\mathrm{A}\}$ is expressed as:

$$
{ }^{A} I=\left[\begin{array}{ccc}
I_{x x} & -I_{x y} & -I_{x z} \\
-I_{x y} & I_{y y} & -I_{y z} \\
-I_{x z} & -I_{y z} & I_{z z}
\end{array}\right]
$$

where:

$$
\begin{array}{ll}
I_{x x}=\iiint_{v}\left(y^{2}+z^{2}\right) \rho d v ; & I_{x y}=\iiint_{v} x y \rho d v \\
I_{y y}=\iiint_{v}\left(x^{2}+z^{2}\right) \rho d v ; & I_{x z}=\iiint_{v} x z \rho d v \\
I_{z z}=\iiint_{v}\left(x^{2}+y^{2}\right) \rho d v ; & I_{y z}=\iiint_{v} y z \rho d v
\end{array}
$$

Manipulator Dynamics

> Iterative Newton-Euler Dynamic Formulation: Let us now study the problem of computing the vector of joint torques (τ) for the given joint motion trajectory ($\theta, \dot{\theta}, \ddot{\theta}$). (The Inverse Dynamics problem useful for controlling of the arm).

Outward Iterations to Compute Velocities and

 Accelerations:To study dynamics from Newton \& Euler equations, it is obvious that we need propagation equations for " $\dot{v} \& \dot{\omega} "$.

From Chapter-5, the angular velocity equation for every instant is:

$$
{ }^{i+1} \omega_{i+1}={ }_{i}^{i+1} R^{i} \omega_{i}+\dot{\theta}_{i+1}{ }^{i+1} \hat{Z}_{i+1}
$$

Differentiating with respect to time we have:
© Sharif University of Technology - CEDRA

Manipulator Dynamics

$$
{ }^{i+1} \dot{\omega}_{i+1}{ }_{i}^{i+1} R^{i} \dot{\omega}_{i}+{ }_{i}^{i+1} R^{i} \omega_{i} \times \dot{\theta}_{i+1}{ }^{i+1} \hat{Z}_{i+1}+\ddot{\theta}_{i+1}{ }^{i+1} \hat{Z}_{i+1}
$$

Where:

$$
{ }^{i+1} \dot{\hat{Z}}_{i+1}={ }_{i}^{i+1} R^{i} \omega_{i} \times{ }^{i+1} \hat{Z}_{i+1} \quad{ }_{i}^{i+1} \dot{R}{ }^{i+1} \omega_{i} \times{ }_{i}^{i+1} R \Rightarrow{ }_{i}^{i+1} R^{i} \omega_{i}={ }^{i+1} \omega_{i}{ }^{i+1}{ }_{i} R^{i} \omega_{i}{ }^{i+1} \omega_{i} x^{i+1} \omega_{i}=0
$$

Manipulator Dynamics

Also from Chapter-5, the linear velocity equation for every instant is:

$$
{ }^{i+1} v_{i+1}={ }_{i}^{i+1} R\left({ }^{i} v_{i}+{ }^{i} \omega_{i} \times{ }^{i} P_{i+1}\right)
$$

Differentiating with respect to time we have:

$$
\begin{aligned}
& { }^{i+1} \dot{v}_{i+1}={ }_{i}^{i+1} R\left({ }^{i} \dot{v}_{i}+{ }^{i} \dot{\omega}_{i} \times{ }^{i} P_{i+1}+{ }^{i} \omega_{i} \times{ }^{i} \dot{P}_{i+1}\right) \Rightarrow \\
& { }^{i+1} \dot{v}_{i+1}={ }_{i}^{i+1} R\left({ }^{i} \dot{v}_{i}+{ }^{i} \dot{\omega}_{i} \times{ }^{i} P_{i+1}+{ }^{i} \omega_{i} \times\left({ }^{i} \omega_{i} \times{ }^{i} P_{i+1}\right)\right.
\end{aligned}
$$

Since at every instant:

$$
{ }_{i}^{i+1} R=\text { cons } \tan t \Rightarrow{ }_{i}^{i+1} \dot{R}=0
$$

Manipulator Dynamics

To find the linear acceleration of the center of mass, we have:

$$
{ }^{i} v_{C i}=\left({ }^{i} v_{i}+{ }^{i} \omega_{i} \times{ }^{i} P_{C i}\right)
$$

Differentiating with respect to time we have:

$$
{ }^{i} \dot{v}_{C i}=\left({ }^{i} \dot{v}_{i}+{ }^{i} \dot{\omega}_{i} \times{ }^{i} P_{C i}+{ }^{i} \omega_{i} \times\left({ }^{i} \omega_{i} \times{ }^{i} P_{C i}\right)\right.
$$

© Sharif University of Technology - CEDRA

Manipulator Dynamics

Having computed all acceleration equations, we shall now apply the Newton-Euler Equations as follows:

First compute the Inertial Force and Torque acting at the mass center of each link;

$$
\begin{aligned}
& F_{i}=m \dot{v}_{C i}=m a_{C i} \\
& N_{i}={ }^{C i} I \dot{\omega}_{i}+\omega_{i}{ }^{\times i} I \omega_{i}
\end{aligned}
$$

CiI = Inertia Tensor of the link-i written in frame $\left\{\mathrm{C}_{\mathbf{i}}\right\}$ with it's origin at the mass center, and having the same orientation as frame $\{\mathrm{i}\}$.

Then, perform Inward Iterations to compute forces and torques;

Manipulator Dynamics

Inward Iterations to Compute Forces and Torques:

Write the force balance on link-i:

$$
{ }^{i} f_{i}={ }_{i+1} R^{i+1} f_{i+1}+{ }^{i} F_{i}
$$

Write the moment balance about the origin of link frame-i:

$$
{ }^{i} n_{i}={ }^{i} N_{i}+{ }_{i+1} R^{i+1} n_{i+1}+{ }^{i} P_{C i} \times{ }^{i} F_{i}+{ }^{i} P_{i+1} \times{ }_{i+1}{ }^{i} R^{i+1} f_{i+1}
$$

Note: The required joint torques are found by taking the Z-component of the torque applied by one link on it's neighbor.

Manipulator Dynamics

Inward Iterations to Compute Forces and Torques:

Therefore, for Revolute Joints we have:

$$
\tau_{i}={ }^{i} n_{i}^{T} \hat{Z}_{i}
$$

Therefore, for Prismatic Joints we have:

$$
\tau_{i}=f_{i}^{T} \hat{Z}_{i}
$$

where as for a robot being in contact with the environment, we may have:

$$
{ }^{N+1} f_{N+1} \not{ }^{N+1} n_{N+1} \neq 0
$$

Manipulator Dynamics

$>$ Iterative Newton-Euler Dynamic Algorithm:

First: Compute link velocities

 and accelerations iteratively from link- 1 to link-n, and apply the Newton-Euler equations to each link.Second: Compute the forces and torques of interaction recursively from link-n back to link-1.

Outward iterations: $i: 0 \rightarrow 5$

$$
\begin{align*}
{ }^{i+1} \omega_{i+1}= & { }_{i}^{i+1} R^{i} \omega_{i}+\dot{\theta}_{i+1}{ }^{i+1} \hat{Z}_{i+1} \tag{6.45}\\
{ }^{i+1} \dot{\omega}_{i+1}= & { }_{i}^{i+1} R^{i} \dot{\omega}_{i}+{ }_{i}^{i+1} R^{i} \omega_{i} \times \dot{\theta}_{i+1}{ }^{i+1} \hat{Z}_{i+1}+\ddot{\theta}_{i+1}{ }^{i+1} \hat{Z}_{i+1}, \tag{6.46}\\
{ }^{i+1} \dot{v}_{i+1}= & { }_{i}^{i+1} R\left({ }^{i} \dot{\omega}_{i} \times{ }^{i} P_{i+1}+{ }^{i} \omega_{i} \times\left({ }^{i} \omega_{i} \times{ }^{i} P_{i+1}\right)+{ }^{i} \dot{v}_{i}\right), \tag{6.47}\\
{ }^{i+1} \dot{v}_{C_{i+1}}= & { }^{i+1} \dot{\omega}_{i+1} \times{ }^{i+1} P_{C_{i+1}} \\
& \quad+{ }^{i+1} \omega_{i+1} \times\left({ }^{i+1} \omega_{i+1} \times{ }^{i+1} P_{C_{i+1}}\right)+{ }^{i+1} \dot{v}_{i+1} \tag{6.48}\\
{ }^{i+1} F_{i+1}= & m_{i+1}{ }^{i+1} \dot{v}_{C_{i+1}}, \tag{6.49}\\
{ }^{i+1} N_{i+1}= & C^{i+1} I_{i+1}{ }^{i+1} \dot{\omega}_{i+1}+{ }^{i+1} \omega_{i+1} \times{ }^{C_{i+1} I_{i+1}}{ }^{i+1} \omega_{i+1} . \tag{6.50}
\end{align*}
$$

Inward iterations: $i: 6 \rightarrow 1$

$$
\begin{align*}
{ }^{i} f_{i}= & { }_{i+1}^{i} R^{i+1} f_{i+1}+{ }^{i} F_{i}, \tag{6.51}\\
& \\
& { }^{i} n_{i}= \tag{6.52}\\
& N_{i}+{ }_{i+1}^{i} R^{i+1} n_{i+1}+{ }^{i} P_{C_{i}} \times{ }^{i} F_{i} \tag{6.53}\\
& \quad+{ }^{i} P_{i+1} \times{ }_{i+1}^{i} R^{i+1} f_{i+1}, \\
\tau_{i}= & { }^{i} n_{i}^{T}{ }^{i} \hat{Z}_{i} .
\end{align*}
$$

Manipulator Dynamics

$>$ Closed-form (Symbolic Form) Dynamic Equations:

Example: The 2-DOF Manipulator Arm.

- Assumptions: Point masses at the distal end of each link,

$$
\begin{aligned}
& { }^{0} \dot{v}_{0}=g \hat{Y}_{0}=\left[\begin{array}{l}
0 \\
g \\
0
\end{array}\right], \quad(\text { gravity-term }) \\
& \left\{\begin{array}{l}
{ }^{C 1} I_{1}=0 \\
{ }^{C 2} I_{2}=0
\end{array}\right\}(\text { point-mass })
\end{aligned}
$$

$\tau_{1}=m_{2} \ell_{2}^{2}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}\right)+m_{2} \ell_{1} \ell_{2} C_{2}\left(2 \ddot{\theta}_{1}+\ddot{\theta}_{2}\right)+\left(m_{1}+m_{2}\right) \ell_{1}^{2} \ddot{\theta}_{1}-$ $m_{2} \ell_{1} \ell_{2} S_{2} \dot{\theta}_{2}^{2}-2 m_{2} \ell_{1} \ell_{2} S_{2} \dot{\theta}_{1} \dot{\theta}_{2}+m_{2} \ell_{2} g C_{12}+\left(m_{1}+m_{2}\right) \ell_{1} g C_{1}$
$\tau_{2}=m_{2} \ell_{1} \ell_{2} C_{2} \ddot{\theta}_{1}+m_{2} \ell_{1} \ell_{2} S_{2} \dot{\theta}_{1}^{2}+m_{2} \ell_{2} g C_{12}+m_{2} \ell_{2}^{2}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}\right)$
Actuator torques as a function of joints position, velocity, and acceleration.

