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 So far we have only studied motion of manipulators 
without regard to forces causing the motion.

 Let us now derive the equations of motion for 
manipulator arms.  In dynamics, we generally 
consider the following issues:

 Forward Dynamics: Computing the resulting motion of the 
manipulator arm (         ) under the application of a set joint 
torques ().  This is useful for simulation of the arm.

 Inverse Dynamics: Computing the vector of joint torques 
() for the given joint motion trajectory (           ) . This is 
useful for controlling of the arm.
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Manipulator Dynamics
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Manipulator Dynamics

Author Method Multiplications Additions

Uicker/Kahn

(Lagrangian Dyn.)

(4  4) Matrices 66,271 51,548

Waters

(Lagrangian Dyn.)

(4  4) Backward 

Recursion

7,051 5,652

Hollerbach

(Lagrangian Dyn.)

(4  4) Forward 

Recursion

4,388 3,586

Hollerbach

(Lagrangian Dyn.)

(3  3) Forward 

Recursion

2,195 1,719

Newton-Euler Recursive 852 738

Kane/Levinson Kane Dynamics 646 394

Raibert/Horn Configuration Space 

Method (CSM)

468 264

Yang/Tzeng Dyn. Simplification 

by Design

72 34 + 4 Trig. 

Functions.
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 Linear Accelerations of Rigid Bodies:
Consider a point “Q” in space, and describe its kinematics in 
two frames {A} and {B}.

From Chapter-5 we have:

Differentiating the velocity equation with respect to the time 
we have:
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 Linear Accelerations of Rigid Bodies:

Noting that:

If BQ is constant (on the R.B.), then: 
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 Angular Acceleration of Rigid Bodies:

Consider:

- Frame {B} rotating relative to {A} with: AB

- Frames {C} rotating relative to {B} with: BC

Then:
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 Newtonian Mechanics:

For a Rigid Body whose center of mass is accelerating with 
“aC”, the Force “F” acting at the mass center is given by:

The Newton’s Law of Motion:

Manipulator Dynamics

CCi mavmPfF   = ( Time rate of change of momentum)

aC

F

C



© Sharif University of Technology - CEDRA

 Newtonian Mechanics:

For a Rigid Body rotating with an angular velocity “”, and 
an angular accelerating “”, the Moment “N” which must be 
acting on the body to cause this motion, is given by:

The Euler’s Equation:

where:
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N
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(The rotational analogy of the Newton’s 

2nd law comes from the Principle of 

Moment of Momentum)

CI = Inertia Tensor of the R.B. 

written in frame {C}
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 Mass Distribution: The Inertia Tensor of an object 
describes the object’s mass distribution (a generalization of 
the scalar moment of inertia).  Relative to a frame {A} is 
expressed as:

where:
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 Iterative Newton-Euler Dynamic Formulation:

Let us now study the problem of computing the vector of 

joint torques () for the given joint motion trajectory (         ).

(The Inverse Dynamics problem useful for controlling of the 

arm).

 Outward Iterations to Compute Velocities and 

Accelerations:
To study dynamics from Newton & Euler equations, it is obvious that 

we need propagation equations for “            ”.

From Chapter-5, the angular velocity equation for every instant is:

Differentiating with respect to time we have:

Manipulator Dynamics

 ,,

&v

1

1

1

1

1

1 ˆ










  i

i

ii

ii

ii

i ZR  



© Sharif University of Technology - CEDRA

Where:

Manipulator Dynamics
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Also from Chapter-5, the linear velocity equation for every instant is:

Differentiating with respect to time we have:

Since at every instant:
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To find the linear acceleration of the center of mass, we have:

Differentiating with respect to time we have:
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Having computed all acceleration equations, we shall now

apply the Newton-Euler Equations as follows:

First compute the Inertial Force and Torque acting at the 
mass center of each link;

Then, perform Inward Iterations to compute forces and 
torques;
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CiI = Inertia Tensor of the link-i written in frame {Ci} with it’s origin at 

the mass center, and having the same orientation as frame {i}. 
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 Inward Iterations to Compute Forces and Torques:

Write the force balance on link-i:

Write the moment balance about

the origin of link frame-i:

Note: The required joint torques are found by taking the Z-component of

the torque applied by one link on it’s neighbor.
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 Inward Iterations to Compute Forces and Torques:

Therefore, for Revolute Joints we

have:

Therefore, for Prismatic Joints we

have:

Note: For a robot moving in free space, we may have:

where as for a robot being in contact with the environment, we may have:
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 Iterative Newton-Euler Dynamic Algorithm:

First: Compute link velocities

and accelerations iteratively

from link-1 to link-n, and 

apply the Newton-Euler 

equations to each link.

Second: Compute the forces

and torques of interaction

recursively from link-n 

back to link-1.

Manipulator Dynamics
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 Closed-form (Symbolic Form) Dynamic Equations:

Example: The 2-DOF Manipulator Arm.

Assumptions: Point masses at the distal end of each link,
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Actuator torques as a function of joints position, velocity, and acceleration.


