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Inverse Manipulator Kinematics

 Forward Kinematics: Describe the

position and orientation of the 

manipulator’s end-effector as a

function joint variables relative

to a base frame.

 Inverse Kinematics: Given the

desired position and orientation

of the end-effector relative to the

base, compute the set of joint

variables which will achieve this

desired result.
A 3-DOF Manipulator Arm
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Inverse Manipulator Kinematics
• Solvability    :

Solving kinematics equations in robotics is a Non-Linear
Problem.

Given;       , Find; {1, 2, …, n}, is a non-linear problem. 

Ex: PUMA-560 Robot. Given;       , Find; {1, 2, …, 6}, (see 
Equation 3.14)

For a 6-DOF manipulator, we have:

 12-Equations, and 6-Unknowns?

 From 9-Equations of the Rotation Matrix, only

3-Equations are independent. 

 Therefore, we have 6-independent non-linear equations
and 6-unknowns.
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Inverse Manipulator Kinematics
• Solvability    :

We have 6-independent non-linear equations and 

6-unknowns.  Therefore, we should investigate the 

followings:

 Existence of Solution   .

 Multiple Solutions   .

 Method of Solution   .
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Inverse Manipulator Kinematics
• Solvability    :

 Existence of Solution   :

Existence of solution to Inv.-Kin. problem depends 

on the existence of the specified goal point in the 

manipulator’s Workspace.

Workspace/Work-envelope : is that 

volume of space which the end-effector of a robot 

can reach.

Dexterous Workspace : is that 

volume of space which the end-effector of a robot 

can reach with all orientations.
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Inverse Manipulator Kinematics
• Solvability    :

 Multiple Solutions   :

A manipulator may reach any position in

the interior of its workspace with different

configurations.  But the system has to be 

able to choose one.

A manipulator moving from point A to B:

Two solutions exist:

- One causes a collision, and

- Other is safe.

Therefore, we need to find all

solutions.

A

B

Obstacle

2 solutions!
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Inverse Manipulator Kinematics

• Solvability    :

 Multiple Solutions  :

Ex: The PUMA-560 manipulator

can reach certain goals with

8-different solutions.  Due to the

limits imposed on joints ranges,

some of these solutions may not

be accessible.

{Other 4-solutions are for the wrist}

 Elbow down  - Elbow up
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Inverse Manipulator Kinematics

• Solvability    :

 Method of Solution   :

Unlike linear equations, no general algorithms exist for 
solving a set of non-linear equations.

A manipulator is considered as Solvable , if it is 
possible to calculate all its solutions.  Two forms of solution 
strategies exist:

Closed-form-Solutions : Solution method is based 
on analytical expressions.

Numerical Solutions : Due to their iterative 
nature, they are too slow, and therefore not a useful 
approach in solving robot kinematics.
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Inverse Manipulator Kinematics
• Solvability    :

 Method of Solution   :

Since numerical solutions are generally very slow relative 
to closed form solutions, it is very important to design a 
manipulator such that a closed form solution exists.

Sufficient condition for a manipulator with 6-Revolute
joints to have a closed-form-solution is that 3-neighboring 
joints axes intersect at a point. (read section 4.6 by Pieper)

Example: In PUMA-560, axes 4, 5, and 6 all intersect at a 
point.
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PUMA-560 Manipulator Kinematics

• Frames Attachment :

 Joint axes 4, 5, and 6 all intersect

at a common point.

{0}

{4}

{5}

{6}
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Inverse Manipulator Kinematics

• Algebraic Method: No general method exists 

to solve kinematics equations.  Let’s solve a 

few examples.

 Ex: A 3-DOF Revolute Planar Robot.

Joint-i i i-1 ai-1 di

1 1 0=0 a0=0 d1=0

2 2 1=0 a1=L1 d2=0

3 3 2=0 a2=L2 d3=0

{y2}

{B} {x0}

{y0}

{x1}

{y1}
{x2}

{x3}

{y3}

(1)

(2)

(3)

()

{x}

{y}

{W}



© Sharif University of Technology - CEDRA

Manipulator Kinematics
 Example: The 3-link planar manipulator
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Since this is a planar robot, 

assume that the goal point is

a specification of the {Wrist}

relative to the {Base}.
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Inverse Manipulator Kinematics

• Therefore, we can use 3-numbers x, y, and 

to specify the goal point such that:

 x, y: define the origin of frame {W}, and

 : defines the orientation of {W} (3rd-link) relative 

to the +x axis of the {B} frame.

 Therefore, one can define the position and 

orientation of {W} relative to {B} as:
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Inverse Manipulator Kinematics
 Let use now equate relations (a) and (b) as follows:
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Inverse Manipulator Kinematics
 Using Atan2 function insures finding all solutions.
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(+ and – means Multiple Solutions for 2: 
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Inverse Manipulator Kinematics
 To find 1 use equations (3) and (4) as follows:

 Let us now change variables to solve these equations:

 Now relations for x and y can be expressed as:
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Inverse Manipulator Kinematics
 Now relations for x and y can be expressed as:

 Therefore:

 One solution for 1, and that depends on the sign chosen for 2.

 From equations (1) and (2) , we can now define 3.
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Inverse Manipulator Kinematics

• Geometric Method: First decompose the spatial 

geometry of the arm into several plane geometry problems.  

Then, solve for the joint angles using tools of plane geometry 

(i.e by applying the “law of cosines”). (see book for an 

example)

Joint-i i i-1 ai-1 di

1 1 0=0 a0=0 d1=0

2 2 1=0 a1=L1 d2=0

3 3 2=0 a2=L2 d3=0

L1

L2

x

y




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Manipulator Kinematics

• Example: The Yasukawa/Motoman MK3 Robot.

 A 5-DOF “5R” Revolute Robot

135 mm 250 mm 215 mm 100 mm

{X0}

{Z0, Z1}

{Z2}

{X3}{X2}

{Z3} {Z4}

{X4} {X5}

{Z5}{X1}
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Manipulator Kinematics

 The Yasukawa/Motoman MK3 Table of Link-Joint 

Parameters:

Joint-i i i-1 ai-1 di

1 1 0= 0 a0= 0 d1= 360

2 2 1= 90 a1= 135 d2= 0

3 3 2= 0 a2=250 d3= 0

4 4 3= 0 a3=215 d4= 0

5 5 4= 90 a4= 0 d5= 100

Ti

i
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T12
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Yasukawa/Motoman MK3 

Manipulator Kinematics
• Now compute each of the link transformations:
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YM MK3 Manipulator Kinematics

• Let us now form the transformation matrix:
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YM MK3 Manipulator 

Inverse-Kinematics
• We wish to solve the inverse-kinematics problem yielding 1…5

as a function of r11…r33, px, py, pz.

 Lets start with 1, since no “yaw” motion is present:

 Note that we cannot have Atan2 (0/0) !!!  If: px=py= 0, then we 
have a special case.

 We now need (2+3 +4)to find the wrist center.  Note that:

 Therefore, we can write:
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YM MK3 Manipulator 

Inverse-Kinematics

 Let’s now solve for 2 and 3 as follows (by 

reconsidering our old planar arm problem):
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YM MK3 Manipulator

Inverse-Kinematics
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YM MK3 Manipulator 

Inverse-Kinematics
 Considering the following figure again, we have:
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YM MK3 Manipulator 

Inverse-Kinematics
 Solving for 4 we have:

 Finally, to solve for 5, given 1…4, note that        is now 

known.  Therefore, we can write the following equation:
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Chapter 4 Exercises:

• 4.1, 4.2, 4.3, 4.8, 4.9

• 4.1 Programming Exercise

• 4.1 MathLab Exercise

• Programming of the PUMA 560 

Inverse Kinematics


